Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, 711 10 Heraklion, Greece.
J Phys Chem B. 2010 Jan 21;114(2):1136-43. doi: 10.1021/jp910006k.
Cytochrome c oxidase (CcO), found in the inner mitochondrial membranes or in many bacteria, catalyzes the four-electron reduction of molecular oxygen to water. Four protons are pumped across the inner mitochondrial membrane through CcO. In this study, quantum mechanics/molecular mechanics and molecular dynamics calculations are used to probe the spectroscopic characteristics of the ferryl intermediates in the aa(3) CcO/O(2) reaction. These highly elaborate calculations, supported by several calculations on smaller model systems, demonstrate the sensitivity of vibrational frequencies on the Coulombic field of heme a(3) and their dependence on the distance of the adjacent Cu(B) to the heme a(3)-Fe atom. This distance seems to be associated with the protonation state of the heme a(3) propionate A, and we propose that it plays a crucial role on the mechanism of action of CcO. In detail, we link proton pumping activity in CcO enzyme (a) to a multiple (1:1:2) resonance among the frequencies of Fe(IV)=O bond stretching, the breathing mode of Histidine 411, and a bending mode of the His411-Fe(IV)=O species (aa(3) from Paracoccus denitrificans numbering) and (b) to Cu(B) displacement by electrostatic interactions toward the heme a(3) iron. We find that the vibrations of the His411-Fe(IV)=O unit become highly coupled depending on the protonation state of the heme a(3) ring A propionate/Asp399 pair, and we propose a mechanism for the resonance Raman enhancement of the bending mode delta(His411-Fe(IV)=O). Calculations on model systems demonstrate that the position of Cu(B) in relation to heme a(3) iron-oxo plays a crucial role in regulating that resonance. We also discuss the origin of the coupling between bending, delta(His411-Fe(IV)=O) and nu(Fe=O) stretching modes, and the role played by such vibrational coupling interactions or Cu(B) position in controlling functional properties of the enzyme, including electron/proton coupling as well as experimental spectra.
细胞色素 c 氧化酶(CcO)存在于线粒体内膜或许多细菌中,催化分子氧的四电子还原为水。四个质子通过 CcO 跨线粒体内膜被泵送。在这项研究中,使用量子力学/分子力学和分子动力学计算来探测 aa(3) CcO/O(2)反应中 ferryl 中间体的光谱特性。这些经过精心设计的计算,得到了几个较小模型系统计算的支持,证明了振动频率对 heme a(3)的库仑场的敏感性及其对相邻 Cu(B)与 heme a(3)-Fe 原子距离的依赖性。这个距离似乎与 heme a(3)丙酸盐 A 的质子化状态有关,我们提出它在 CcO 酶的作用机制中起着至关重要的作用。具体来说,我们将 CcO 酶中的质子泵送活性(a)与 Fe(IV)=O 键拉伸、Histidine 411 的呼吸模式和 His411-Fe(IV)=O 物种的弯曲模式之间的多重(1:1:2)共振联系起来(来自 Paracoccus denitrificans 的 aa(3)编号)和(b)通过静电相互作用将 Cu(B)位移到 heme a(3)铁。我们发现,His411-Fe(IV)=O 单元的振动变得高度耦合,这取决于 heme a(3)环 A 丙酸盐/Asp399 对的质子化状态,我们提出了一个共振拉曼增强弯曲模式 delta(His411-Fe(IV)=O)的机制。对模型系统的计算表明,Cu(B)在 heme a(3)铁-氧之间的位置在调节该共振中起着至关重要的作用。我们还讨论了弯曲、delta(His411-Fe(IV)=O)和 nu(Fe=O)伸缩模式之间耦合的起源,以及这种振动耦合相互作用或 Cu(B)位置在控制酶的功能特性中的作用,包括电子/质子偶联以及实验光谱。