Suppr超能文献

一种新的图表和评分系统简化了状态变化的分析:类风湿关节炎临床试验中的疾病缓解。

A new graph and scoring system simplified analysis of changing states: disease remissions in a rheumatoid arthritis clinical trial.

机构信息

Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands.

出版信息

J Clin Epidemiol. 2010 Jun;63(6):633-7. doi: 10.1016/j.jclinepi.2009.08.021. Epub 2009 Dec 5.

Abstract

BACKGROUND

In the setting of multiple remission and relapse periods of a chronic disease, simple endpoint analysis does not fully capture all relevant information, and we need methods to additionally describe both the duration of remission as well as the interruptions in this desired state. Probably the two-state continuous Markov process model comprises the best mathematical approach to data analysis. However, this approach is complex and not intuitive to clinicians. In this paper we propose a simple scoring system and a graph that can enhance the information about the remission experience in a trial or cohort study.

METHODS

The continuity rewarded ('ConRew') score sums up periods in remission, and rewards extended periods by placing more value on uninterrupted periods than on interrupted periods. The 'patient vector graph' attempts to plot each patient's remission experience over time as a horizontal line (the 'vector') that is visible when the patient is in remission, but interrupted whenever relapse occurs. In this way a pattern is formed that conveys the number of patients experiencing remission, their individual total duration and interruptions, and time when these occur.

RESULTS

In a dataset of a randomized trial in early rheumatoid arthritis, the graph clearly showed both early and late benefit of one group over the other. The scoring system demonstrated the main benefit was in the number of remission periods, not in their 'uninterruptedness'.

CONCLUSION

Both approaches proved feasible and added extra information.

摘要

背景

在慢性病多次缓解和复发的情况下,简单的终点分析不能充分捕捉所有相关信息,我们需要方法来额外描述缓解期的持续时间以及这种理想状态的中断。可能两状态连续马尔可夫过程模型是数据分析的最佳数学方法。然而,这种方法对临床医生来说比较复杂,也不容易理解。在本文中,我们提出了一种简单的评分系统和一个图形,可以增强试验或队列研究中关于缓解体验的信息。

方法

连续奖励(“ConRew”)评分汇总缓解期,通过对无中断期给予比中断期更高的价值,来奖励延长的缓解期。“患者向量图”试图将每个患者的缓解体验随时间绘制为一条水平线(“向量”),当患者处于缓解期时可见,但每当复发时就会中断。这样就形成了一种模式,传达了经历缓解的患者数量、他们的个人总持续时间和中断时间以及这些时间发生的情况。

结果

在一项早期类风湿关节炎随机试验的数据集上,图形清楚地显示了一组患者比另一组患者的早期和晚期获益。评分系统表明,主要益处在于缓解期的数量,而不在于其“无中断性”。

结论

两种方法都被证明是可行的,并增加了额外的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验