Suppr超能文献

一种用于事件相关电位子成分时空识别的新方法。

A new method for spatiotemporal identification of event-related potential subcomponents.

作者信息

Mohseni Hamid R, Sanei Saeid

机构信息

Schools of Engineering and Psychology, Cardiff University, Wales, UK.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6595-8. doi: 10.1109/IEMBS.2009.5332547.

Abstract

In this study a novel method for tracking and separation of event-related potential (ERP) subcomponents from trial to trial is considered. The sources of ERP subcomponents are assumed to be electric current dipoles (ECD). The shape of each ERP subcomponent is also supposed to be monophasic wave and modeled using a Gaussian waveform. We are interested in the estimation and tracking of ERP subcomponent locations and parameters (amplitude, latency and width of each Gaussian waveform). Estimation of ECD locations, which have nonlinear relation to the measurement, is performed by particle filtering, and estimation of the amplitude is optimally estimated by a maximum likelihood approach, and finally estimation of latency and width of the Gaussian functions are given by Newton-Raphson technique. New recursive methods are introduced for both maximum likelihood and Newton-Raphson approaches to prevent the divergence of the filtering in the presence of very low signal to noise ratio (SNR). The proposed method was assessed using both simulated and real data and the results verified a successful deployment of the method in ERP analysis.

摘要

在本研究中,考虑了一种逐次跟踪和分离事件相关电位(ERP)子成分的新方法。ERP子成分的来源假定为电流偶极子(ECD)。每个ERP子成分的形状也假定为单相波,并使用高斯波形进行建模。我们感兴趣的是ERP子成分位置和参数(每个高斯波形的幅度、潜伏期和宽度)的估计与跟踪。通过粒子滤波进行与测量具有非线性关系的ECD位置估计,通过最大似然法对幅度进行最优估计,最后利用牛顿-拉夫逊技术给出高斯函数潜伏期和宽度的估计。针对最大似然法和牛顿-拉夫逊法引入了新的递归方法,以防止在极低信噪比(SNR)情况下滤波发散。使用模拟数据和真实数据对所提出的方法进行了评估,结果验证了该方法在ERP分析中的成功应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验