Suppr超能文献

使用一种用于去除基线漂移噪声的新算法对心电图衍生呼吸(EDR)信号进行实时估计。

Real-time estimation of the ECG-derived respiration (EDR) signal using a new algorithm for baseline wander noise removal.

作者信息

Arunachalam Shivaram P, Brown Lewis F

机构信息

Electrical & Computer Science Department at South Dakota State University, Brookings, SD 57007, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5681-4. doi: 10.1109/IEMBS.2009.5333113.

Abstract

Numerous methods have been reported for deriving respiratory information such as respiratory rate from the electrocardiogram (ECG). In this paper the authors present a real-time algorithm for estimation and removal of baseline wander (BW) noise and obtaining the ECG-derived respiration (EDR) signal for estimation of a patient's respiratory rate. This algorithm utilizes a real-time "T-P knot" baseline wander removal technique which is based on the repetitive backward subtraction of the estimated baseline from the ECG signal. The estimated baseline is interpolated from the ECG signal at midpoints between each detected R-wave. As each segment of the estimated baseline signal is subtracted from the ECG, a "flattened" ECG signal is produced for which the amplitude of each R-wave is analyzed. The respiration signal is estimated from the amplitude modulation of R-waves caused by breathing. Testing of the algorithm was conducted in a pseudo real-time environment using MATLAB(TM), and test results are presented for simultaneously recorded ECG and respiration recordings from the PhysioNet/PhysioBank Fantasia database. Test data from patients were chosen with particularly large baseline wander components to ensure the reliability of the algorithm under adverse ECG recording conditions. The algorithm yielded EDR signals with a respiration rate of 4.4 breaths/min. for Fantasia patient record f2y10 and 10.1 breaths/min. for Fantasia patient record f2y06. These were in good agreement with the simultaneously recorded respiration data provided in the Fantasia database thus confirming the efficacy of the algorithm.

摘要

已经报道了许多从心电图(ECG)中获取诸如呼吸频率等呼吸信息的方法。在本文中,作者提出了一种实时算法,用于估计和去除基线漂移(BW)噪声,并获取用于估计患者呼吸频率的心电图衍生呼吸(EDR)信号。该算法利用一种实时的“T-P结”基线漂移去除技术,该技术基于从ECG信号中重复向后减去估计的基线。估计的基线是在每个检测到的R波之间的中点处从ECG信号中插值得到的。当从ECG中减去估计的基线信号的每个段时,会产生一个“平坦化”的ECG信号,对其每个R波的幅度进行分析。呼吸信号是根据呼吸引起的R波幅度调制来估计的。使用MATLAB(TM)在伪实时环境中对该算法进行了测试,并给出了来自PhysioNet/PhysioBank Fantasia数据库同时记录的ECG和呼吸记录的测试结果。选择具有特别大的基线漂移成分的患者测试数据,以确保该算法在不利的ECG记录条件下的可靠性。对于Fantasia患者记录f2y10,该算法产生的EDR信号呼吸频率为4.4次/分钟;对于Fantasia患者记录f2y06,呼吸频率为10.1次/分钟。这些结果与Fantasia数据库中同时记录的呼吸数据高度一致,从而证实了该算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验