Correa Agustina Garcés, Laciar Eric, Orosco Lorena, Gómez Maria E, Otoya Raúl, Jané Raimón
Gabinete de Tecnología Medica, Universidad Nacional de San Juan, San Juan, Argentina.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1384-7. doi: 10.1109/IEMBS.2009.5334114.
A simple algorithm to automatically detect segments with epileptic seizures in long EEG records has been developed. The main advantages of the proposed method are: the simple algorithm used and the lower computational cost. The algorithm measures the energy of each EEG channel by a sliding window and calculates some features of each patient signal to detect the epileptic seizure. It is also able to distinguish between seizures and noise artifacts. Nine invasive EEG records acquired by Epilepsy Center of the University Hospital of Freiburg were analyzed in this work. In 90 segments studied (39 with epileptic seizures) the sensitivity obtained with the method is 87.18 %. The algorithm is appropriate to detect epileptic seizures, with high sensitivity, in long EEG records to decrease the time used by physicians and specialists in visual inspections.
已经开发出一种简单的算法,用于自动检测长时间脑电图记录中出现癫痫发作的片段。该方法的主要优点是:使用的算法简单且计算成本较低。该算法通过滑动窗口测量每个脑电图通道的能量,并计算每个患者信号的一些特征以检测癫痫发作。它还能够区分癫痫发作和噪声伪迹。在这项工作中,分析了弗莱堡大学医院癫痫中心采集的9份侵入性脑电图记录。在所研究的90个片段中(39个有癫痫发作),该方法获得的灵敏度为87.18%。该算法适用于在长时间脑电图记录中以高灵敏度检测癫痫发作,从而减少医生和专家进行目视检查所花费的时间。