Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400 098, India.
J Chem Inf Model. 2009 Dec;49(12):2695-707. doi: 10.1021/ci900224u.
A simple quantitative structure activity relationship (QSAR) approach termed local indices for similarity analysis (LISA) has been developed. In this technique, the global molecular similarity is broken up as local similarity at each grid point surrounding the molecules and is used as a QSAR descriptor. In this way, a view of the molecular sites permitting favorable and rational changes to enhance activity is obtained. The local similarity index, calculated on the basis of Petke's formula, segregates the regions into "equivalent", "favored similar", and "disfavored similar" (alternatively "favored dissimilar") potentials with respect to a reference molecule in the data set. The method has been tested on three large and diverse data sets-thrombin, glycogen phosphorylase b, and thermolysin inhibitors. The QSAR models derived using genetic algorithm incorporated partial least square analysis statistics are found to be comparable to the ones obtained by the standard three-dimensional (3D)-QSAR methods, such as comparative molecular field analysis and comparative molecular similarity indices analysis. The graphical interpretation of the LISA models is straightforward, and the outcome of the models corroborates well with literature data. The LISA models give insight into the binding mechanisms of the ligand with the enzyme and allow fine-tuning of the molecules at the local level to improve their activity.
已经开发出一种称为局部相似性分析(LISA)的简单定量构效关系(QSAR)方法。在该技术中,将分子周围每个网格点的全局分子相似性分解为局部相似性,并将其用作 QSAR 描述符。通过这种方式,可以获得允许有利和合理变化以提高活性的分子部位的视图。根据 Petke 公式计算的局部相似性指数将区域划分为“等效”、“有利相似”和“不利相似”(或者“有利不相似”)相对于数据集中参考分子的势能。该方法已在三个大型且多样化的数据集(凝血酶、糖原磷酸化酶 b 和胰凝乳蛋白酶抑制剂)上进行了测试。使用遗传算法结合偏最小二乘分析统计数据得出的 QSAR 模型与标准三维(3D)QSAR 方法(如比较分子场分析和比较分子相似性指数分析)获得的模型相当。LISA 模型的图形解释非常直观,模型的结果与文献数据非常吻合。LISA 模型深入了解了配体与酶的结合机制,并允许在局部水平上对分子进行微调以提高其活性。