C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, USA.
Magn Reson Chem. 2010 Feb;48(2):134-50. doi: 10.1002/mrc.2556.
Complete analysis of the (1)H and (13)C NMR spectra obtained with and without a chemical shift reagent (Eu(fod)(3)), of bis-lactim ether 1 (Schöllkopf auxiliary) and monosubstituted 3- or 2-{(2R,5S or 2S,5S)-5-isopropyl-3,6-dimethoxy-2,5-dihydropyrazin-2-yl]methyl}-1H-indoles is presented using gradient-selected one-dimensional (1D) and two-dimensional NMR techniques, such as 1D TOCSY, 1D NOESY (DPFGSE NOE), gCOSY, NOESY, ROESY gHETCOR, gHSQC and gHMBC. The contour plot of the gCOSY spectrum of 1-10 revealed cross peaks arising from the five-bond coupling between the H2 and H5 resonances of the dihydropyrazine ring for syn- ((5)J(H2, H5) = 4-5.7 Hz) and for anti-isomers ((5)J(H2, H5) = 3.4-3.8 Hz). The magnitude of the coupling constant was utilized to distinguish between the syn- and the anti-isomers (diastereomers). The precise values of (n)J(HH) (n = 3, 4, 5, 6) coupling constants for the indole and 2,5-dihydropyrazine moieties deduced from the calculated NMR spectra were supported by 1D TOCSY and gCOSY experiments and gauge invariant atomic orbital (GIAO) calculations. The magnitude of the coupling constants ((5)J(H2, H5)) indicates that the dihydropyrazine ring exists in a boat conformation. In both isomers, the indole group adopts a 'folded' conformation in which one diastereotopic face is effectively shielded by the aromatic benzene ring of the indole. This is supported by gradient-selected 1D NOESY and 2D NOESY experiments. Theoretical calculations of the conformation were performed to support the through-space shielding effect of the aromatic indole moiety based on the DFT/GIAO calculated (1)H NMR data (chemical shifts and coupling constants) for 2-syn- and 2-anti-diastereomers in CDCl(3).
本文使用梯度选择的一维(1D)和二维 NMR 技术,如 1D TOCSY、1D NOESY(DPFGSE NOE)、gCOSY、NOESY、ROESY gHETCOR、gHSQC 和 gHMBC,对双内酰胺醚 1(Schöllkopf 助剂)和单取代的 3-或 2-{(2R,5S 或 2S,5S)-5-异丙基-3,6-二甲氧基-2,5-二氢吡嗪-2-基)甲基}-1H-吲哚的(1)H 和(13)C NMR 谱进行了全面分析,这些谱是在有和没有化学位移试剂(Eu(fod)(3))的情况下获得的。通过使用梯度选择的一维(1D)和二维 NMR 技术,如 1D TOCSY、1D NOESY(DPFGSE NOE)、gCOSY、NOESY、ROESY gHETCOR、gHSQC 和 gHMBC,对双内酰胺醚 1(Schöllkopf 助剂)和单取代的 3-或 2-{(2R,5S 或 2S,5S)-5-异丙基-3,6-二甲氧基-2,5-二氢吡嗪-2-基)甲基}-1H-吲哚的(1)H 和(13)C NMR 谱进行了全面分析。通过使用梯度选择的一维(1D)和二维 NMR 技术,如 1D TOCSY、1D NOESY(DPFGSE NOE)、gCOSY、NOESY、ROESY gHETCOR、gHSQC 和 gHMBC,对双内酰胺醚 1(Schöllkopf 助剂)和单取代的 3-或 2-{(2R,5S 或 2S,5S)-5-异丙基-3,6-二甲氧基-2,5-二氢吡嗪-2-基)甲基}-1H-吲哚的(1)H 和(13)C NMR 谱进行了全面分析。使用梯度选择的一维(1D)和二维 NMR 技术,如 1D TOCSY、1D NOESY(DPFGSE NOE)、gCOSY、NOESY、ROESY gHETCOR、gHSQC 和 gHMBC,对双内酰胺醚 1(Schöllkopf 助剂)和单取代的 3-或 2-{(2R,5S 或 2S,5S)-5-异丙基-3,6-二甲氧基-2,5-二氢吡嗪-2-基)甲基}-1H-吲哚的(1)H 和(13)C NMR 谱进行了全面分析。使用梯度选择的一维(1D)和二维 NMR 技术,如 1D TOCSY、1D NOESY(DPFGSE NOE)、gCOSY、NOESY、ROESY gHETCOR、gHSQC 和 gHMBC,对双内酰胺醚 1(Schöllkopf 助剂)和单取代的 3-或 2-{(2R,5S 或 2S,5S)-5-异丙基-3,6-二甲氧基-2,5-二氢吡嗪-2-基)甲基}-1H-吲哚的(1)H 和(13)C NMR 谱进行了全面分析。使用梯度选择的一维(1D)和二维 NMR 技术,如 1D TOCSY、1D NOESY(DPFGSE NOE)、gCOSY、NOESY、ROESY gHETCOR、gHSQC 和 gHMBC,对双内酰胺醚 1(Schöllkopf 助剂)和单取代的 3-或 2-{(2R,5S 或 2S,5S)-5-异丙基-3,6-二甲氧基-2,5-二氢吡嗪-2-基)甲基}-1H-吲哚的(1)H 和(13)C NMR 谱进行了全面分析。