Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan.
Biochemistry. 2010 Jan 26;49(3):493-501. doi: 10.1021/bi9018829.
The primary electron acceptor pheophytin (Pheo(D1)) plays a crucial role in regulation of forward and backward electron transfer in photosystem II (PSII). It is known that some cyanobacteria control the Pheo(D1) potential in high-light acclimation by exchanging the D1 proteins from different copies of the psbA genes. To clarify the mechanism of the potential control of Pheo(D1), we studied the hydrogen bond interactions of Pheo(D1) in the neutral and anionic states using light-induced Fourier transform infrared (FTIR) difference spectroscopy. FTIR difference spectra of Pheo(D1) upon its photoreduction were obtained using three different PSII preparations, PSII core complexes from Thermosynechococcus elongatus possessing PsbA1 as a D1 subunit (PSII-PsbA1), those with PsbA3 (PSII-PsbA3), and PSII membranes from spinach. The D1-Gln130 side chain, which is hydrogen bonded to the 13(1)-keto C=O group of Pheo(D1) in PSII-PsbA1, is replaced by Glu in PSII-PsbA3 and spinach PSII. The spectrum of PSII-PsbA1 exhibited 13(1)-keto C=O bands at 1682 and 1605 cm(-1) in neutral Pheo(D1) and its anion, respectively, while the corresponding bands were observed at frequencies lower by 1-3 and 18-19 cm(-1), respectively, in the latter two preparations. This larger frequency shift in Pheo(D1)(-) than Pheo(D1) by the change of the hydrogen bond donor was well reproduced by density functional theory (DFT) calculations for the Pheo models hydrogen bonded with acetamide and acetic acid. The DFT calculations also exhibited a higher redox potential for Pheo reduction in the model with acetic acid than that with acetamide, consistent with previous observations for the D1-Gln130Glu mutant of Synechocystis. It is thus concluded that a stronger hydrogen bond effect on the Pheo(-) anion than the neutral Pheo causes the shift in the redox potential, which is utilized in the photoprotection mechanism of PSII.
原初电子受体去镁叶绿素(Pheo(D1))在调节光系统 II(PSII)的正向和反向电子转移中起着至关重要的作用。已知一些蓝藻通过交换 psbA 基因不同拷贝的 D1 蛋白来控制高光适应中的 Pheo(D1)潜能。为了阐明 Pheo(D1)潜能控制的机制,我们使用光诱导傅里叶变换红外(FTIR)差谱法研究了中性和阴离子态 Pheo(D1)的氢键相互作用。使用三种不同的 PSII 制剂获得了 Pheo(D1)光还原后的 FTIR 差谱:具有 D1 亚基 PsbA1 的 Thermosynechococcus elongatus 的 PSII 核心复合物(PSII-PsbA1)、具有 PsbA3 的 PSII-PsbA3 和菠菜的 PSII 膜。在 PSII-PsbA1 中,D1-Gln130 侧链与 Pheo(D1)的 13(1)-酮 C=O 基团形成氢键,而在 PSII-PsbA3 和菠菜 PSII 中则被 Glu 取代。PSII-PsbA1 的光谱在中性 Pheo(D1)及其阴离子中分别在 1682 和 1605 cm(-1)处显示 13(1)-酮 C=O 带,而在后两种制剂中,相应的带分别在频率上低 1-3 和 18-19 cm(-1)。通过改变氢键供体,Pheo(D1)(-)的这种较大的频率位移比 Pheo(D1)更好地由 Pheo 模型与乙酰胺和乙酸形成氢键的密度泛函理论(DFT)计算重现。DFT 计算还显示了具有乙酸的 Pheo 还原的氧化还原电位高于具有乙酰胺的模型,这与以前对 Synechocystis 的 D1-Gln130Glu 突变体的观察结果一致。因此,可以得出结论,对 Pheo(-)阴离子的氢键效应强于中性 Pheo,导致氧化还原电位发生位移,这在 PSII 的光保护机制中得到了利用。