NSF I/UCRC for Biocatalysis and Bioprocessing of Macromolecules, Department of Chemical and Biological Sciences, Polytechnic Institute of NYU, Six Metrotech Center, Brooklyn, New York 11201, USA.
Biomacromolecules. 2010 Jan 11;11(1):259-68. doi: 10.1021/bm901112m.
Biobased omega-carboxy fatty acid monomers 1,18-cis-9-octadecenedioic, 1,22-cis-9-docosenedioic, and 1,18-cis-9,10-epoxy-octadecanedioic acids were synthesized in high conversion yields from oleic, erucic and epoxy stearic acids by whole-cell biotransformations catalyzed by C. tropicalis ATCC20962. Maximum volumetric yields in shake-flasks were 17.3, 14.2, and 19.1 g/L after 48 h conversion for oleic acid and 72 h conversions for erucic and epoxy stearic acids, respectively. Studies in fermentor with better control of pH and glucose feeding revealed that conversion of oleic acid to 1,18-cis-9-octadecenedioic acid by C. tropicalis ATCC20962 occurred with productivities up to 0.5 g/L/h. The conversion of omega-carboxy fatty acid monomers to polyesters was then studied using immobilized Candida antarctica Lipase B (N435) as catalyst. Polycondensations with diols were performed in bulk as well as in diphenyl ether. The retension of functionality from fatty acid, to omega-carboxy fatty acid monomer and to corresponding polyesters resulted in polymers with with unsaturated and epoxidized repeat units and M(w) values ranging from 25000 to 57000 g/mol. These functional groups along chains disrupted crystallization giving materials that are low melting (23-40 degrees C). In contrast, saturated polyesters prepared from 1,18-octadecanedioic acid and 1,8-octanediol have correspondingly higher melting transitions (88 degrees C). TGA results indicated that all synthesized polyesters showed high thermal stabilities. Thus, the preparation of functional monomers from C. tropicalis omega-oxidation of fatty acids provides a wide range of new monomer building blocks to construct functional polymers.
生物基ω-羧基脂肪酸单体 1,18-顺-9-十八碳二烯二酸、1,22-顺-9-二十二碳二烯二酸和 1,18-顺-9,10-环氧十八烷二酸,通过全细胞转化,由 C. tropicalis ATCC20962 催化,从油酸、芥酸和环氧硬脂酸高转化率合成。在摇瓶中 48 h 转化时,油酸的最大体积产率分别为 17.3、14.2 和 19.1 g/L,而芥酸和环氧硬脂酸分别转化 72 h 后,产率分别为 72 h。在发酵罐中进行研究,更好地控制 pH 值和葡萄糖进料,结果表明,C. tropicalis ATCC20962 将油酸转化为 1,18-顺-9-十八碳二烯二酸的过程具有高达 0.5 g/L/h 的生产率。然后,使用固定化南极假丝酵母脂肪酶 B(N435)作为催化剂,研究了 ω-羧基脂肪酸单体向聚酯的转化。二醇的缩聚反应在本体和二苯醚中进行。从脂肪酸、ω-羧基脂肪酸单体到相应聚酯的功能保留,导致具有不饱和和环氧化重复单元的聚合物和 M(w)值范围为 25000 至 57000 g/mol。这些沿链的官能团破坏了结晶,导致熔点低(23-40 摄氏度)的材料。相比之下,由 1,18-十八烷二酸和 1,8-辛二醇制备的饱和聚酯具有相应较高的熔融转变温度(88 摄氏度)。TGA 结果表明,所有合成的聚酯都表现出很高的热稳定性。因此,通过 C. tropicalis 的脂肪酸 ω-氧化制备功能性单体,为构建功能性聚合物提供了广泛的新型单体构建块。