Suppr超能文献

一种改进的经验贝叶斯方法,用于估计微阵列时间序列数据中的差异基因表达:BETR(时间调节的贝叶斯估计)。

An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation).

机构信息

Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.

出版信息

BMC Bioinformatics. 2009 Dec 10;10:409. doi: 10.1186/1471-2105-10-409.

Abstract

BACKGROUND

Microarray gene expression time-course experiments provide the opportunity to observe the evolution of transcriptional programs that cells use to respond to internal and external stimuli. Most commonly used methods for identifying differentially expressed genes treat each time point as independent and ignore important correlations, including those within samples and between sampling times. Therefore they do not make full use of the information intrinsic to the data, leading to a loss of power.

RESULTS

We present a flexible random-effects model that takes such correlations into account, improving our ability to detect genes that have sustained differential expression over more than one time point. By modeling the joint distribution of the samples that have been profiled across all time points, we gain sensitivity compared to a marginal analysis that examines each time point in isolation. We assign each gene a probability of differential expression using an empirical Bayes approach that reduces the effective number of parameters to be estimated.

CONCLUSIONS

Based on results from theory, simulated data, and application to the genomic data presented here, we show that BETR has increased power to detect subtle differential expression in time-series data. The open-source R package betr is available through Bioconductor. BETR has also been incorporated in the freely-available, open-source MeV software tool available from http://www.tm4.org/mev.html.

摘要

背景

微阵列基因表达时间序列实验提供了观察细胞用于对内外部刺激做出响应的转录程序演变的机会。最常用于识别差异表达基因的方法将每个时间点视为独立的,忽略了重要的相关性,包括样本内和采样时间之间的相关性。因此,它们没有充分利用数据固有的信息,导致功效损失。

结果

我们提出了一种灵活的随机效应模型,考虑到了这些相关性,提高了我们检测在多个时间点上持续差异表达的基因的能力。通过对所有时间点进行分析的样本的联合分布进行建模,与单独检查每个时间点的边缘分析相比,我们获得了敏感性。我们使用经验贝叶斯方法为每个基因分配差异表达的概率,从而减少了要估计的有效参数数量。

结论

基于理论、模拟数据和本文中呈现的基因组数据的应用结果,我们表明 BETR 具有增加检测时间序列数据中微妙差异表达的功效。BETR 通过 Bioconductor 提供了开源 R 包。BETR 也已被集成到免费的、开源的 MeV 软件工具中,可从 http://www.tm4.org/mev.html 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验