Suppr超能文献

胰岛素亚基错误折叠和淀粉样纤维的分子建模。

Molecular modeling of the misfolded insulin subunit and amyloid fibril.

机构信息

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA.

出版信息

Biophys J. 2009 Dec 16;97(12):3187-95. doi: 10.1016/j.bpj.2009.09.042.

Abstract

Insulin, a small hormone protein comprising 51 residues in two disulfide-linked polypeptide chains, adopts a predominantly alpha-helical conformation in its native state. It readily undergoes protein misfolding and aggregates into amyloid fibrils under a variety of conditions. Insulin is a unique model system in which to study protein fibrillization, since its three disulfide bridges are retained in the fibrillar state and thus limit the conformational space available to the polypeptide chains during misfolding and fibrillization. Taking into account this unique conformational restriction, we modeled possible monomeric subunits of the insulin amyloid fibrils using beta-solenoid folds, namely, the beta-helix and beta-roll. Both models agreed with currently available biophysical data. We performed molecular dynamics simulations, which allowed some limited insights into the relative structural stability, suggesting that the beta-roll subunit model may be more stable than the beta-helix subunit model. We also constructed beta-solenoid-based insulin fibril models and conducted fiber diffraction simulation to identify plausible fibril architectures of insulin amyloid. A comparison of simulated fiber diffraction patterns of the fibril models to the experimental insulin x-ray fiber diffraction data suggests that the model fibers composed of six twisted beta-roll protofilaments provide the most reasonable fit to available experimental diffraction patterns and previous biophysical studies.

摘要

胰岛素是一种由 51 个残基组成的小激素蛋白,由两条通过二硫键连接的多肽链组成,在其天然状态下主要采取α-螺旋构象。它在各种条件下容易发生蛋白质错误折叠并聚集成淀粉样纤维。胰岛素是研究蛋白质纤维形成的独特模型体系,因为其三个二硫键在纤维状态下得以保留,从而限制了多肽链在错误折叠和纤维形成过程中的构象空间。考虑到这种独特的构象限制,我们使用β-发夹环折叠,即β-螺旋和β-滚环,对胰岛素淀粉样纤维的可能单体亚基进行建模。两种模型都与当前可用的生物物理数据一致。我们进行了分子动力学模拟,这些模拟允许对相对结构稳定性进行一些有限的了解,表明β-滚环亚基模型可能比β-螺旋亚基模型更稳定。我们还构建了基于β-发夹环的胰岛素纤维模型,并进行了纤维衍射模拟,以确定胰岛素淀粉样纤维的可能结构。将纤维模型的模拟纤维衍射图案与实验胰岛素 X 射线纤维衍射数据进行比较表明,由六个扭曲的β-滚环原纤维组成的模型纤维与可用的实验衍射图案和先前的生物物理研究最吻合。

相似文献

1
Molecular modeling of the misfolded insulin subunit and amyloid fibril.
Biophys J. 2009 Dec 16;97(12):3187-95. doi: 10.1016/j.bpj.2009.09.042.
2
Disulfide bridges remain intact while native insulin converts into amyloid fibrils.
PLoS One. 2012;7(6):e36989. doi: 10.1371/journal.pone.0036989. Epub 2012 Jun 1.
3
The protofilament structure of insulin amyloid fibrils.
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9196-201. doi: 10.1073/pnas.142459399. Epub 2002 Jul 1.
4
Glucagon fibril polymorphism reflects differences in protofilament backbone structure.
J Mol Biol. 2010 Apr 9;397(4):932-46. doi: 10.1016/j.jmb.2010.02.012. Epub 2010 Feb 12.
5
Elongated oligomers assemble into mammalian PrP amyloid fibrils.
J Mol Biol. 2006 Mar 31;357(3):975-85. doi: 10.1016/j.jmb.2006.01.052. Epub 2006 Jan 31.
6
A microbeam X-ray diffraction study of insulin spherulites.
J Mol Biol. 2006 Sep 15;362(2):327-33. doi: 10.1016/j.jmb.2006.07.041. Epub 2006 Jul 27.
7
Atomic resolution structure of full-length human insulin fibrils.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2401458121. doi: 10.1073/pnas.2401458121. Epub 2024 May 29.
9
Fibrillation of human insulin A and B chains.
Biochemistry. 2006 Aug 1;45(30):9342-53. doi: 10.1021/bi0604936.

引用本文的文献

2
Atomic resolution structure of full-length human insulin fibrils.
Proc Natl Acad Sci U S A. 2024 Jun 4;121(23):e2401458121. doi: 10.1073/pnas.2401458121. Epub 2024 May 29.
4
Insulin Derived Fibrils Induce Cytotoxicity and Trigger Inflammation in Murine Models.
J Diabetes Sci Technol. 2023 Jan;17(1):163-171. doi: 10.1177/19322968211033868. Epub 2021 Jul 21.
5
Phenolic Preservative Removal from Commercial Insulin Formulations Reduces Tissue Inflammation while Maintaining Euglycemia.
ACS Pharmacol Transl Sci. 2021 Apr 26;4(3):1161-1174. doi: 10.1021/acsptsci.1c00047. eCollection 2021 Jun 11.
6
Unraveling VEALYL Amyloid Formation Using Advanced Vibrational Spectroscopy and Microscopy.
Biophys J. 2020 Jul 7;119(1):87-98. doi: 10.1016/j.bpj.2020.05.026. Epub 2020 Jun 3.
7
Amyloid Aggregation of Insulin: An Interaction Study of Green Tea Constituents.
Sci Rep. 2020 Jun 4;10(1):9115. doi: 10.1038/s41598-020-66033-6.
8
A new era for understanding amyloid structures and disease.
Nat Rev Mol Cell Biol. 2018 Dec;19(12):755-773. doi: 10.1038/s41580-018-0060-8.
10
Melanosomal formation of PMEL core amyloid is driven by aromatic residues.
Sci Rep. 2017 Mar 8;7:44064. doi: 10.1038/srep44064.

本文引用的文献

1
Natural and synthetic prion structure from X-ray fiber diffraction.
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16990-5. doi: 10.1073/pnas.0909006106. Epub 2009 Sep 28.
2
Paired beta-sheet structure of an Abeta(1-40) amyloid fibril revealed by electron microscopy.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7462-6. doi: 10.1073/pnas.0712290105. Epub 2008 May 15.
3
4
Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core.
Science. 2008 Mar 14;319(5869):1523-6. doi: 10.1126/science.1151839.
5
The structural basis of yeast prion strain variants.
Nature. 2007 Sep 13;449(7159):233-7. doi: 10.1038/nature06108. Epub 2007 Sep 2.
6
Structural analyses of fibrinogen amyloid fibrils.
Amyloid. 2007 Sep;14(3):199-203. doi: 10.1080/13506120701461111.
7
Binding mode of Thioflavin T in insulin amyloid fibrils.
J Struct Biol. 2007 Sep;159(3):483-97. doi: 10.1016/j.jsb.2007.06.004. Epub 2007 Jun 21.
8
A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils.
PLoS Biol. 2007 May;5(5):e134. doi: 10.1371/journal.pbio.0050134.
9
Atomic structures of amyloid cross-beta spines reveal varied steric zippers.
Nature. 2007 May 24;447(7143):453-7. doi: 10.1038/nature05695. Epub 2007 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验