Laboratory of Pharmacology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
Neuroscience. 2010 Mar 10;166(1):292-304. doi: 10.1016/j.neuroscience.2009.12.001. Epub 2009 Dec 16.
In inflamed tissues, extracellular pH decreases and acidosis is an important source of pain. Histamine is released from mast cells under inflammatory conditions and evokes the pain sensation in vivo, but the cellular mechanism of histamine-induced pain has not been well understood. In the present study, we examined the effects of histamine on Ca(2+) and membrane potential responses to acid in isolated mouse dorsal root ganglion (DRG) neurons. In capsaicin-sensitive DRG neurons from wild-type mice, acid (>pH 5.0) evoked Ca(2+) increases, but not in DRG neurons from transient receptor potential V1 (TRPV1) (-/-) mice. Regardless of isolectin GS-IB4 (IB4)-staining, histamine potentiated Ca(2+) responses to acid (>or=pH 6.0) that were mediated by TRPV1 activation. Histamine increased membrane depolarization induced by acid and evoked spike discharges. RT-PCR indicated the expression of all four histamine receptors (H1R, H2R, H3R, H4R) in mouse DRG. The potentiating effect of histamine was mimicked by an H1R agonist, but not H2R-H4R agonists and was inhibited only by an H1R antagonist. Histamine failed to potentiate the Ca(2+) response to acid in the presence of inhibitors for phospholipase C (PLC) and protein kinase C (PKC). A lipoxygenase inhibitor and protein kinase A inhibitor did not affect the potentiating effects of histamine. Carrageenan and complete Freund's adjuvant produced inflammatory hyperalgesia, but these inflammatory conditions did not change the potentiating effects of histamine in DRG neurons. The present results suggest that histamine sensitizes acid-induced responses through TRPV1 activation via H1R coupled with PLC/PKC pathways, the action of which may be involved in the generation of inflammatory pain.
在发炎组织中,细胞外 pH 值降低,酸中毒是疼痛的重要来源。在炎症条件下,组胺从肥大细胞中释放出来,并在体内引起疼痛感觉,但组胺诱导疼痛的细胞机制尚未得到很好的理解。在本研究中,我们研究了组胺对分离的小鼠背根神经节 (DRG) 神经元的 Ca(2+) 和膜电位对酸反应的影响。在野生型小鼠的辣椒素敏感型 DRG 神经元中,酸(>pH 5.0)引起 Ca(2+) 增加,但在瞬时受体电位 V1 (TRPV1) (-/-) 小鼠的 DRG 神经元中则不然。无论是否用异硫氰酸荧光素-葡聚糖 4000 (IB4) 染色,组胺均增强了 TRPV1 激活介导的酸(>或=pH 6.0)引起的 Ca(2+) 反应。组胺增加了酸诱导的膜去极化并引发了尖峰放电。RT-PCR 表明,所有四种组胺受体(H1R、H2R、H3R、H4R)在小鼠 DRG 中均有表达。H1R 激动剂模拟了组胺的增强作用,但 H2R-H4R 激动剂则没有,并且仅被 H1R 拮抗剂抑制。在 PLC 和蛋白激酶 C (PKC) 抑制剂存在的情况下,组胺未能增强酸对 Ca(2+) 的反应。脂氧合酶抑制剂和蛋白激酶 A 抑制剂对组胺的增强作用没有影响。角叉菜胶和完全弗氏佐剂产生炎症性痛觉过敏,但这些炎症条件并未改变组胺在 DRG 神经元中的增强作用。本研究结果表明,组胺通过与 PLC/PKC 途径偶联的 H1R 激活,使酸诱导的反应敏感化,其作用可能与炎症性疼痛的产生有关。
Neurosci Lett. 2005-11-18
Pharmaceuticals (Basel). 2023-10-17
Nature. 2022-7
Biomolecules. 2021-8-6
Front Neurosci. 2019-11-26