Suppr超能文献

基于支持向量机的健康智能家居中日常生活活动多模态分类:传感器、算法及初步实验结果

SVM-based multimodal classification of activities of daily living in Health Smart Homes: sensors, algorithms, and first experimental results.

作者信息

Fleury Anthony, Vacher Michel, Noury Norbert

机构信息

AFIRM Team, Techniques de l'Ingénierie Médicale et de la Complexité-Informatique, Mathématique et Applications, Grenoble laboratory, Unité Mixte de Recherche 5525, Centre National de la Recherche Scientifique/Université Joseph Fourier, Faculté de Médecine de Grenoble, F-38706 La Tronche Cedex, France.

出版信息

IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):274-83. doi: 10.1109/TITB.2009.2037317. Epub 2009 Dec 11.

Abstract

By 2050, about one third of the French population will be over 65. Our laboratory's current research focuses on the monitoring of elderly people at home, to detect a loss of autonomy as early as possible. Our aim is to quantify criteria such as the international activities of daily living (ADL) or the French Autonomie Gerontologie Groupes Iso-Ressources (AGGIR) scales, by automatically classifying the different ADL performed by the subject during the day. A Health Smart Home is used for this. Our Health Smart Home includes, in a real flat, infrared presence sensors (location), door contacts (to control the use of some facilities), temperature and hygrometry sensor in the bathroom, and microphones (sound classification and speech recognition). A wearable kinematic sensor also informs postural transitions (using pattern recognition) and walk periods (frequency analysis). This data collected from the various sensors are then used to classify each temporal frame into one of the ADL that was previously acquired (seven activities: hygiene, toilet use, eating, resting, sleeping, communication, and dressing/undressing). This is done using support vector machines. We performed a 1-h experimentation with 13 young and healthy subjects to determine the models of the different activities, and then we tested the classification algorithm (cross validation) with real data.

摘要

到2050年,约三分之一的法国人口将超过65岁。我们实验室目前的研究重点是对居家老年人进行监测,以便尽早发现自主能力丧失的情况。我们的目标是通过自动分类受试者在白天进行的不同日常生活活动,来量化诸如国际日常生活活动(ADL)或法国自主老年医学等资源相同小组(AGGIR)量表等标准。为此使用了一个健康智能家居。我们的健康智能家居在一套实际公寓中包括红外存在传感器(定位)、门触点(用于控制某些设施的使用)、浴室中的温度和湿度传感器以及麦克风(声音分类和语音识别)。一个可穿戴运动传感器还能告知姿势转换(使用模式识别)和步行时段(频率分析)。然后,从各种传感器收集到的数据被用于将每个时间帧分类为先前获取的日常生活活动之一(七种活动:卫生、如厕、进食、休息、睡眠、交流以及穿衣/脱衣)。这是通过支持向量机来完成的。我们对13名年轻健康的受试者进行了1小时的实验,以确定不同活动的模型,然后我们用真实数据测试了分类算法(交叉验证)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验