Department of Pathology, University of Michigan, Ann Arbor, MI 48109-0605, USA.
Hum Mol Genet. 2010 Mar 1;19(5):837-47. doi: 10.1093/hmg/ddp552. Epub 2009 Dec 10.
Pathways regulating neuronal vulnerability are poorly understood, yet are central to identifying therapeutic targets for degenerative neurological diseases. Here, we characterize mechanisms underlying neurodegeneration in Niemann-Pick type C (NPC) disease, a lysosomal storage disorder characterized by impaired cholesterol trafficking. To date, the relative contributions of neuronal and glial defects to neuron loss are poorly defined. Using gene targeting, we generate Npc1 conditional null mutant mice. Deletion of Npc1 in mature cerebellar Purkinje cells leads to an age-dependent impairment in motor tasks, including rotarod and balance beam performance. Surprisingly, these mice did not show the early death or weight loss that are characteristic of global Npc1 null mice, suggesting that Purkinje cell degeneration does not underlie these phenotypes. Histological examination revealed the progressive loss of Purkinje cells in an anterior-to-posterior gradient. This cell autonomous neurodegeneration occurs in a spatiotemporal pattern similar to that of global knockout mice. A subpopulation of Purkinje cells in the posterior cerebellum exhibits marked resistance to cell death despite Npc1 deletion. To explore this selective response, we investigated the electrophysiological properties of vulnerable and susceptible Purkinje cell subpopulations. Unexpectedly, Purkinje cells in both subpopulations displayed no electrophysiological abnormalities prior to degeneration. Our data establish that Npc1 deficiency leads to cell autonomous, selective neurodegeneration and suggest that the ataxic symptoms of NPC disease arise from Purkinje cell death rather than cellular dysfunction.
神经元易损性的调控途径知之甚少,但对于确定退行性神经疾病的治疗靶点至关重要。在这里,我们描述了尼曼-匹克 C 型(NPC)疾病中神经退行性变的机制,这种疾病是一种溶酶体贮积症,其特征是胆固醇转运受损。迄今为止,神经元和神经胶质缺陷对神经元丢失的相对贡献还没有得到很好的定义。通过基因靶向,我们生成了 NPC1 条件性缺失突变小鼠。在成熟的小脑浦肯野细胞中缺失 NPC1 会导致运动任务(包括旋转棒和平衡木性能)的年龄依赖性损伤。令人惊讶的是,这些小鼠并没有表现出全球 NPC1 缺失小鼠所特有的早期死亡或体重减轻,这表明浦肯野细胞退化不是这些表型的基础。组织学检查显示浦肯野细胞从前向后逐渐丢失。这种细胞自主的神经退行性变发生在与全局敲除小鼠相似的时空模式中。尽管 NPC1 缺失,但小脑后叶的浦肯野细胞亚群仍表现出明显的抵抗细胞死亡的能力。为了探索这种选择性反应,我们研究了脆弱和易感浦肯野细胞亚群的电生理特性。出乎意料的是,在退化之前,两个亚群的浦肯野细胞都没有表现出电生理异常。我们的数据表明 NPC1 缺乏导致细胞自主的选择性神经退行性变,并表明 NPC 疾病的共济失调症状是由浦肯野细胞死亡而不是细胞功能障碍引起的。