Department of Radiology, University of Michigan Health System, Ann Arbor, 48109, USA.
AJNR Am J Neuroradiol. 2010 Apr;31(4):736-40. doi: 10.3174/ajnr.A1901. Epub 2009 Dec 10.
Does the K-means algorithm do a better job of differentiating benign and malignant neck pathologies compared to only mean ADC? The objective of our study was to analyze the differences between ADC partitions to evaluate whether the K-means technique can be of additional benefit to whole-lesion mean ADC alone in distinguishing benign and malignant neck pathologies.
MR imaging studies of 10 benign and 10 malignant proved neck pathologies were postprocessed on a PC by using in-house software developed in Matlab. Two neuroradiologists manually contoured the lesions, with the ADC values within each lesion clustered into 2 (low, ADC-ADC(L); high, ADC-ADC(H)) and 3 partitions (ADC(L); intermediate, ADC-ADC(I); ADC(H)) by using the K-means clustering algorithm. An unpaired 2-tailed Student t test was performed for all metrics to determine statistical differences in the means of the benign and malignant pathologies.
A statistically significant difference between the mean ADC(L) clusters in benign and malignant pathologies was seen in the 3-cluster models of both readers (P = .03 and .022, respectively) and the 2-cluster model of reader 2 (P = .04), with the other metrics (ADC(H), ADC(I); whole-lesion mean ADC) not revealing any significant differences. ROC curves demonstrated the quantitative differences in mean ADC(H) and ADC(L) in both the 2- and 3-cluster models to be predictive of malignancy (2 clusters: P = .008, area under curve = 0.850; 3 clusters: P = .01, area under curve = 0.825).
The K-means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared with whole-lesion mean ADC alone.
与仅平均 ADC 相比,K-均值算法是否更能区分良恶性颈部病变?本研究的目的是分析 ADC 分区之间的差异,以评估 K-均值技术是否可以在区分良恶性颈部病变方面,对整体病变平均 ADC 有额外的帮助。
在个人计算机上使用 Matlab 中开发的内部软件对 10 例良性和 10 例恶性颈部病变的磁共振成像研究进行后处理。两位神经放射科医生手动勾画病变,使用 K-均值聚类算法将每个病变内的 ADC 值分为 2(低,ADC-ADC(L);高,ADC-ADC(H))和 3 个分区(ADC(L);中间,ADC-ADC(I);ADC(H))。对所有指标进行配对的双侧 t 检验,以确定良性和恶性病变之间的平均值在统计学上是否存在差异。
在两位读者的 3 聚类模型(分别为 P =.03 和.022)和读者 2 的 2 聚类模型(P =.04)中,良性和恶性病变的平均 ADC(L)簇之间存在统计学差异,而其他指标(ADC(H)、ADC(I);整体病变平均 ADC)则没有显示出任何显著差异。ROC 曲线表明,在 2-和 3 聚类模型中,平均 ADC(H)和 ADC(L)的定量差异对恶性肿瘤具有预测性(2 个聚类:P =.008,曲线下面积 = 0.850;3 个聚类:P =.01,曲线下面积 = 0.825)。
生成大数据集分区的 K-均值聚类算法可以更好地描述颈部病变的特征,与单独使用整体病变平均 ADC 相比,在区分良恶性颈部病变方面可能具有额外的帮助。