Suppr超能文献

k-均值聚类算法在区分良恶性颈部病变表观扩散系数值中的效用。

Utility of the k-means clustering algorithm in differentiating apparent diffusion coefficient values of benign and malignant neck pathologies.

机构信息

Department of Radiology, University of Michigan Health System, Ann Arbor, 48109, USA.

出版信息

AJNR Am J Neuroradiol. 2010 Apr;31(4):736-40. doi: 10.3174/ajnr.A1901. Epub 2009 Dec 10.

Abstract

BACKGROUND AND PURPOSE

Does the K-means algorithm do a better job of differentiating benign and malignant neck pathologies compared to only mean ADC? The objective of our study was to analyze the differences between ADC partitions to evaluate whether the K-means technique can be of additional benefit to whole-lesion mean ADC alone in distinguishing benign and malignant neck pathologies.

MATERIAL AND METHODS

MR imaging studies of 10 benign and 10 malignant proved neck pathologies were postprocessed on a PC by using in-house software developed in Matlab. Two neuroradiologists manually contoured the lesions, with the ADC values within each lesion clustered into 2 (low, ADC-ADC(L); high, ADC-ADC(H)) and 3 partitions (ADC(L); intermediate, ADC-ADC(I); ADC(H)) by using the K-means clustering algorithm. An unpaired 2-tailed Student t test was performed for all metrics to determine statistical differences in the means of the benign and malignant pathologies.

RESULTS

A statistically significant difference between the mean ADC(L) clusters in benign and malignant pathologies was seen in the 3-cluster models of both readers (P = .03 and .022, respectively) and the 2-cluster model of reader 2 (P = .04), with the other metrics (ADC(H), ADC(I); whole-lesion mean ADC) not revealing any significant differences. ROC curves demonstrated the quantitative differences in mean ADC(H) and ADC(L) in both the 2- and 3-cluster models to be predictive of malignancy (2 clusters: P = .008, area under curve = 0.850; 3 clusters: P = .01, area under curve = 0.825).

CONCLUSIONS

The K-means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared with whole-lesion mean ADC alone.

摘要

背景与目的

与仅平均 ADC 相比,K-均值算法是否更能区分良恶性颈部病变?本研究的目的是分析 ADC 分区之间的差异,以评估 K-均值技术是否可以在区分良恶性颈部病变方面,对整体病变平均 ADC 有额外的帮助。

材料与方法

在个人计算机上使用 Matlab 中开发的内部软件对 10 例良性和 10 例恶性颈部病变的磁共振成像研究进行后处理。两位神经放射科医生手动勾画病变,使用 K-均值聚类算法将每个病变内的 ADC 值分为 2(低,ADC-ADC(L);高,ADC-ADC(H))和 3 个分区(ADC(L);中间,ADC-ADC(I);ADC(H))。对所有指标进行配对的双侧 t 检验,以确定良性和恶性病变之间的平均值在统计学上是否存在差异。

结果

在两位读者的 3 聚类模型(分别为 P =.03 和.022)和读者 2 的 2 聚类模型(P =.04)中,良性和恶性病变的平均 ADC(L)簇之间存在统计学差异,而其他指标(ADC(H)、ADC(I);整体病变平均 ADC)则没有显示出任何显著差异。ROC 曲线表明,在 2-和 3 聚类模型中,平均 ADC(H)和 ADC(L)的定量差异对恶性肿瘤具有预测性(2 个聚类:P =.008,曲线下面积 = 0.850;3 个聚类:P =.01,曲线下面积 = 0.825)。

结论

生成大数据集分区的 K-均值聚类算法可以更好地描述颈部病变的特征,与单独使用整体病变平均 ADC 相比,在区分良恶性颈部病变方面可能具有额外的帮助。

相似文献

7
Diffusion kurtosis imaging does not improve differentiation performance of breast lesions in a short clinical protocol.
Magn Reson Imaging. 2019 Nov;63:205-216. doi: 10.1016/j.mri.2019.08.007. Epub 2019 Aug 16.
8
Evaluation of malignant and benign renal lesions using diffusion-weighted MRI with multiple b values.
Acta Radiol. 2012 Apr 1;53(3):359-65. doi: 10.1258/ar.2011.110601. Epub 2012 Feb 14.
9
Breast lesion characterization using whole-lesion histogram analysis with stretched-exponential diffusion model.
J Magn Reson Imaging. 2018 Jun;47(6):1701-1710. doi: 10.1002/jmri.25904. Epub 2017 Nov 22.

引用本文的文献

2
High-Throughput Metabolomics by 1D NMR.
Angew Chem Int Ed Engl. 2019 Jan 21;58(4):968-994. doi: 10.1002/anie.201804736. Epub 2018 Nov 11.
9
Multiparametric magnetic resonance imaging of brain disorders.
Top Magn Reson Imaging. 2010 Apr;21(2):129-38. doi: 10.1097/RMR.0b013e31821e56c2.
10
Differentiation between benign and malignant orbital tumors at 3-T diffusion MR-imaging.
Neuroradiology. 2011 Jul;53(7):517-22. doi: 10.1007/s00234-011-0838-2. Epub 2011 Feb 1.

本文引用的文献

1
Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes.
Eur J Radiol. 2009 Dec;72(3):381-7. doi: 10.1016/j.ejrad.2008.09.034. Epub 2008 Nov 7.
2
Diffusion-weighted magnetic resonance imaging in neck lymph adenopathy.
Cancer Imaging. 2008 Sep 30;8(1):173-80. doi: 10.1102/1470-7330.2008.0025.
3
Usefulness of diffusion-weighted imaging and the apparent diffusion coefficient in the assessment of head and neck tumors.
J Neuroradiol. 2008 May;35(2):71-8. doi: 10.1016/j.neurad.2008.01.080. Epub 2008 Mar 5.
8
Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging.
Radiology. 2001 Sep;220(3):621-30. doi: 10.1148/radiol.2202010063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验