Suppr超能文献

生物信息学方法分析固有无序/无规则蛋白质。

Bioinformatical approaches to characterize intrinsically disordered/unstructured proteins.

机构信息

Institute of Enzymology, H-1518 Budapest, Hungary.

出版信息

Brief Bioinform. 2010 Mar;11(2):225-43. doi: 10.1093/bib/bbp061. Epub 2009 Dec 10.

Abstract

Intrinsically disordered/unstructured proteins exist without a stable three-dimensional (3D) structure as highly flexible conformational ensembles. The available genome sequences revealed that these proteins are surprisingly common and their frequency reaches high proportions in eukaryotes. Due to their vital role in various biological processes including signaling and regulation and their involvement in various diseases, disordered proteins and protein segments are the focus of many biochemical, molecular biological, pathological and pharmaceutical studies. These proteins are difficult to study experimentally because of the lack of unique structure in the isolated form. Their amino acid sequence, however, is available, and can be used for their identification and characterization by bioinformatic tools, analogously to globular proteins. In this review, we first present a small survey of current methods to identify disordered proteins or protein segments, focusing on those that are publicly available as web servers. In more detail we also discuss approaches that predict disordered regions and specific regions involved in protein binding by modeling the physical background of protein disorder. In our review we argue that the heterogeneity of disordered segments needs to be taken into account for a better understanding of protein disorder.

摘要

无规则/无结构蛋白质不存在稳定的三维(3D)结构,而是呈现高度灵活的构象集合。现有的基因组序列表明,这些蛋白质非常常见,在真核生物中达到很高的比例。由于它们在包括信号转导和调节在内的各种生物学过程中起着至关重要的作用,以及它们在各种疾病中的参与,无规则蛋白质和蛋白质片段是许多生化、分子生物学、病理学和药物学研究的焦点。由于在分离形式下缺乏独特的结构,这些蛋白质很难进行实验研究。然而,它们的氨基酸序列是可用的,可以通过生物信息学工具进行鉴定和特征分析,类似于球状蛋白质。在这篇综述中,我们首先对当前识别无规则蛋白质或蛋白质片段的方法进行了简要调查,重点介绍了那些可作为网络服务器使用的方法。更详细地,我们还讨论了通过模拟蛋白质无序的物理背景来预测无序区域和特定蛋白质结合区域的方法。在我们的综述中,我们认为需要考虑无序片段的异质性,以更好地理解蛋白质无序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验