Suppr超能文献

线粒体转录因子 Mtf1 捕获解开的非模板链,以促进开放复合物的形成。

Mitochondrial transcription factor Mtf1 traps the unwound non-template strand to facilitate open complex formation.

机构信息

From the Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854.

From the Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854.

出版信息

J Biol Chem. 2010 Feb 5;285(6):3949-3956. doi: 10.1074/jbc.M109.050732. Epub 2009 Dec 11.

Abstract

The catalytic subunit of the mitochondrial (mt) RNA polymerase (RNAP) is highly homologous to the bacteriophage T7/T3 RNAP. Unlike the phage RNAP, however, the mtRNAP relies on accessory proteins to initiate promoter-specific transcription. Rpo41, the catalytic subunit of the Saccharomyces cerevisiae mtRNAP, requires Mtf1 for opening the duplex promoter. To elucidate the role of Mtf1 in promoter-specific DNA opening, we have mapped the structural organization of the mtRNAP using site-specific protein-DNA photo-cross-linking studies. Both Mtf1 and Rpo41 cross-linked to distinct sites on the promoter DNA, but the dominant cross-links were those of the Mtf1, which indicates a direct role of Mtf1 in promoter-specific binding and initiation. Strikingly, Mtf1 cross-linked with a high efficiency to the melted region of the promoter DNA, based on which we suggest that Mtf1 facilitates DNA melting by trapping the non-template strand in the unwound conformation. Additional strong cross-links of the Mtf1 were observed with the -8 to -10 base-paired region of the promoter. The cross-linking results were incorporated into a structural model of the mtRNAP-DNA, created from a homology model of the C-terminal domain of Rpo41 and the available structure of Mtf1. The promoter DNA is sandwiched between Mtf1 and Rpo41 in the structural model, and Mtf1 closely associates mainly with one face of the promoter across the entire nona-nucleotide consensus sequence. Overall, the studies reveal that in many ways the role of Mtf1 is analogous to the transcription factors of the multisubunit RNAPs, which provides an intriguing link between single- and multisubunit RNAPs.

摘要

线粒体(mt)RNA 聚合酶(RNAP)的催化亚基与噬菌体 T7/T3 RNAP 高度同源。然而,与噬菌体 RNAP 不同的是,mtRNAP 依赖辅助蛋白来启动启动子特异性转录。酿酒酵母 mtRNAP 的催化亚基 Rpo41 需要 Mtf1 来打开双链启动子。为了阐明 Mtf1 在启动子特异性 DNA 打开中的作用,我们使用定点蛋白-DNA 光交联研究来绘制 mtRNAP 的结构组织。Mtf1 和 Rpo41 都与启动子 DNA 上的不同位点交联,但主要的交联是 Mtf1 的交联,这表明 Mtf1 在启动子特异性结合和起始中具有直接作用。引人注目的是,Mtf1 与启动子 DNA 的熔化区域高度有效地交联,基于此,我们提出 Mtf1 通过将非模板链捕获在未缠绕构象中促进 DNA 熔化。Mtf1 还与启动子的-8 到-10 碱基对区域观察到额外的强交联。交联结果被纳入从 Rpo41 的 C 端结构域的同源模型和可用的 Mtf1 结构创建的 mtRNAP-DNA 的结构模型中。在结构模型中,启动子 DNA 夹在 Mtf1 和 Rpo41 之间,并且 Mtf1 主要与跨越整个九核苷酸保守序列的启动子的一个面密切相关。总的来说,这些研究表明,在许多方面,Mtf1 的作用类似于多亚基 RNAP 的转录因子,这为单亚基和多亚基 RNAP 之间提供了一个有趣的联系。

相似文献

1
Mitochondrial transcription factor Mtf1 traps the unwound non-template strand to facilitate open complex formation.
J Biol Chem. 2010 Feb 5;285(6):3949-3956. doi: 10.1074/jbc.M109.050732. Epub 2009 Dec 11.
2
Fluorescence mapping of the open complex of yeast mitochondrial RNA polymerase.
J Biol Chem. 2009 Feb 27;284(9):5514-22. doi: 10.1074/jbc.M807880200. Epub 2008 Dec 30.
3
The N-terminal domain of the yeast mitochondrial RNA polymerase regulates multiple steps of transcription.
J Biol Chem. 2011 May 6;286(18):16109-20. doi: 10.1074/jbc.M111.228023. Epub 2011 Mar 18.
4
Yeast Mitochondrial Transcription Factor Mtf1 Determines the Precision of Promoter-Directed Initiation of RNA Polymerase Rpo41.
PLoS One. 2015 Sep 2;10(9):e0136879. doi: 10.1371/journal.pone.0136879. eCollection 2015.
5
Cryo-EM Structures Reveal Transcription Initiation Steps by Yeast Mitochondrial RNA Polymerase.
Mol Cell. 2021 Jan 21;81(2):268-280.e5. doi: 10.1016/j.molcel.2020.11.016. Epub 2020 Dec 4.
6
7
Mutations in the yeast mitochondrial RNA polymerase specificity factor, Mtf1, verify an essential role in promoter utilization.
J Biol Chem. 2002 Aug 2;277(31):28143-9. doi: 10.1074/jbc.M204123200. Epub 2002 May 20.
8
Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase.
Biochim Biophys Acta. 2012 Sep-Oct;1819(9-10):930-8. doi: 10.1016/j.bbagrm.2012.02.003. Epub 2012 Feb 14.

引用本文的文献

2
Human mitochondrial RNA polymerase structures reveal transcription start-site and slippage mechanism.
bioRxiv. 2024 Dec 2:2024.12.02.626445. doi: 10.1101/2024.12.02.626445.
3
The Identification of the Mitochondrial DNA Polymerase γ (Mip1) of the Entomopathogenic Fungus .
Microorganisms. 2024 May 23;12(6):1052. doi: 10.3390/microorganisms12061052.
4
Mitochondrial Transcription of Entomopathogenic Fungi Reveals Evolutionary Aspects of Mitogenomes.
Front Microbiol. 2022 Mar 21;13:821638. doi: 10.3389/fmicb.2022.821638. eCollection 2022.
5
Cryo-EM Structures Reveal Transcription Initiation Steps by Yeast Mitochondrial RNA Polymerase.
Mol Cell. 2021 Jan 21;81(2):268-280.e5. doi: 10.1016/j.molcel.2020.11.016. Epub 2020 Dec 4.
6
Structure, mechanism, and regulation of mitochondrial DNA transcription initiation.
J Biol Chem. 2020 Dec 25;295(52):18406-18425. doi: 10.1074/jbc.REV120.011202. Epub 2020 Oct 30.
7
The dynamic landscape of transcription initiation in yeast mitochondria.
Nat Commun. 2020 Aug 27;11(1):4281. doi: 10.1038/s41467-020-17793-2.

本文引用的文献

1
Multiple functions of yeast mitochondrial transcription factor Mtf1p during initiation.
J Biol Chem. 2010 Feb 5;285(6):3957-3964. doi: 10.1074/jbc.M109.051003. Epub 2009 Nov 17.
2
A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.
J Biol Chem. 2009 May 15;284(20):13641-13647. doi: 10.1074/jbc.M900718200. Epub 2009 Mar 23.
3
Fluorescence mapping of the open complex of yeast mitochondrial RNA polymerase.
J Biol Chem. 2009 Feb 27;284(9):5514-22. doi: 10.1074/jbc.M807880200. Epub 2008 Dec 30.
4
Improved scoring function for comparative modeling using the M4T method.
J Struct Funct Genomics. 2009 Mar;10(1):95-9. doi: 10.1007/s10969-008-9044-9. Epub 2008 Nov 5.
6
The transition to an elongation complex by T7 RNA polymerase is a multistep process.
J Biol Chem. 2007 Aug 3;282(31):22879-86. doi: 10.1074/jbc.M702589200. Epub 2007 Jun 4.
7
ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10. doi: 10.1093/nar/gkm290. Epub 2007 May 21.
8
M4T: a comparative protein structure modeling server.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W363-8. doi: 10.1093/nar/gkm341. Epub 2007 May 21.
9
Mechanism for de novo RNA synthesis and initiating nucleotide specificity by t7 RNA polymerase.
J Mol Biol. 2007 Jul 6;370(2):256-68. doi: 10.1016/j.jmb.2007.03.041. Epub 2007 Mar 21.
10
Initiation and beyond: multiple functions of the human mitochondrial transcription machinery.
Mol Cell. 2006 Dec 28;24(6):813-25. doi: 10.1016/j.molcel.2006.11.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验