Semiconductor Physics Institute, 11 A. Goštauto, 01108 Vilnius, Lithuania.
Philos Trans A Math Phys Eng Sci. 2010 Jan 28;368(1911):305-17. doi: 10.1098/rsta.2009.0211.
We analyse anticipating synchronization in chaotic systems with time-delay coupling. Two algorithms for extending the prediction horizon are considered. One of them is based on the design of a suitable coupling matrix compensating the phase lag in the time-delay feedback term of the slave system. The second algorithm extends the first by incorporating, in the coupling law, information from many previous states of the master and slave systems. We demonstrate the efficiency of both algorithms with the simple dynamical model of coupled unstable spirals, as well as with the coupled Rössler systems. The maximum prediction time attained for the Rössler system is equal to the characteristic period of chaotic oscillations.
我们分析了具有时滞耦合的混沌系统中的预测同步。考虑了两种扩展预测范围的算法。其中一种基于设计合适的耦合矩阵来补偿从从系统的时滞反馈项中的相位滞后。第二种算法通过在耦合律中包含主从系统的许多先前状态的信息来扩展第一种算法。我们使用耦合不稳定螺旋的简单动力学模型以及耦合的 Rossler 系统来证明这两种算法的有效性。对于 Rossler 系统,达到的最大预测时间等于混沌振荡的特征周期。