Department of Pharmacology and Chemical Biology, University of Pittsburgh Drug Discovery Institute, Biomedical Science Tower-3, Suite 10040, 3501 Fifth Ave., University of Pittsburgh, Pittsburgh, PA 15260, USA.
J Pharmacol Exp Ther. 2010 Mar;332(3):906-11. doi: 10.1124/jpet.109.162842. Epub 2009 Dec 15.
Disorazoles are macrocyclic polyketides first isolated from the fermentation broth of the myxobacterium Sorangium cellulosum. Both the major fermentation product disorazole A(1) and its much rarer companion disorazole C(1) exhibit potent cytotoxic activity against many human tumor cells. Furthermore, the disorazoles appear to bind tubulin uniquely among known antimitotic agents, promoting apoptosis or premature senescence. It is uncertain what conveys tumor cell sensitivity to these complex natural products. Therefore, we generated and characterized human tumor cells resistant to disorazole C(1). Resistant cells proved exceedingly difficult to generate and required single step mutagenesis with chronic stepwise exposure to increasing concentrations of disorazole C(1). Compared with wild-type HeLa cells, disorazole C(1)-resistant HeLa/DZR cells were 34- and 8-fold resistant to disorazole C(1) and disorazole A(1) growth inhibition, respectively. HeLa/DZR cells were also remarkably cross-resistant to vinblastine (280-fold), paclitaxel (2400-fold), and doxorubicin (47-fold) but not cisplatin, suggesting a multidrug-resistant phenotype. Supporting this hypothesis, MCF7/MDR cells were 10-fold cross-resistant to disorazole C(1). HeLa/DZR disorazole resistance was not durable in the absence of chronic compound exposure. Verapamil reversed HeLa/DZR resistance to disorazole C(1) and disorazole A(1). Moreover, HeLa/DZR cells expressed elevated levels of the drug resistance ATP-binding cassette ABCB1 transporter. Loss of ABCB1 by incubation with short interfering RNA restored sensitivity to the disorazoles. Thus, the multidrug resistance transporter ABCB1 can affect the cytotoxicity of both disorazole C(1) and A(1). Disorazole C(1), however, retained activity against cells resistant against the clinically used microtubule-stabilizing agent epothilone B.
多杀菌素是首次从粘细菌 Sorangium cellulosum 的发酵液中分离得到的大环聚酮化合物。主要发酵产物多杀菌素 A(1)及其罕见的伴生物多杀菌素 C(1)均对多种人类肿瘤细胞表现出强烈的细胞毒性。此外,多杀菌素似乎在已知的抗有丝分裂药物中独特地结合微管蛋白,促进细胞凋亡或过早衰老。目前还不清楚是什么原因导致肿瘤细胞对这些复杂天然产物敏感。因此,我们生成并鉴定了对多杀菌素 C(1)具有抗性的人肿瘤细胞。结果发现,耐药细胞极难生成,需要采用单一步骤诱变,同时对多杀菌素 C(1)进行慢性逐步递增浓度暴露。与野生型 HeLa 细胞相比,多杀菌素 C(1)耐药的 HeLa/DZR 细胞对多杀菌素 C(1)和多杀菌素 A(1)生长抑制的抗性分别提高了 34 倍和 8 倍。HeLa/DZR 细胞对长春碱(280 倍)、紫杉醇(2400 倍)和阿霉素(47 倍)也表现出显著的交叉耐药性,但对顺铂耐药,提示其为多药耐药表型。支持这一假说,MCF7/MDR 细胞对多杀菌素 C(1)的交叉耐药性提高了 10 倍。在没有慢性化合物暴露的情况下,HeLa/DZR 对多杀菌素的耐药性是不持久的。维拉帕米逆转了 HeLa/DZR 对多杀菌素 C(1)和多杀菌素 A(1)的耐药性。此外,HeLa/DZR 细胞表达了高水平的耐药性 ATP 结合盒 ABCB1 转运蛋白。用短干扰 RNA 孵育降低 ABCB1 水平可恢复对多杀菌素的敏感性。因此,多药耐药转运蛋白 ABCB1 可影响多杀菌素 C(1)和 A(1)的细胞毒性。然而,多杀菌素 C(1)对临床上使用的微管稳定剂埃博霉素 B 耐药的细胞仍保持活性。