Université Catholique de Louvain, Brussels, Belgium.
Am J Physiol Endocrinol Metab. 2010 Mar;298(3):E586-96. doi: 10.1152/ajpendo.00503.2009. Epub 2009 Dec 15.
Due to their high glucose permeability, insulin-secreting pancreatic beta-cells likely undergo strong intracellular protein glycation at high glucose concentrations. They may, however, be partly protected from the glucotoxic alterations of their survival and function by fructosamine-3-kinase (FN3K), a ubiquitous enzyme that initiates deglycation of intracellular proteins. To test that hypothesis, we cultured pancreatic islets from Fn3k-knockout (Fn3k(-/-)) mice and their wild-type (WT) littermates for 1-3 wk in the presence of 10 or 30 mmol/l glucose (G10 or G30, respectively) and measured protein glycation, apoptosis, preproinsulin gene expression, and Ca(2+) and insulin secretory responses to acute glucose stimulation. The more potent glycating agent d-ribose (25 mmol/l) was used as positive control for protein glycation. In WT islets, a 1-wk culture in G30 significantly increased the amount of soluble intracellular protein-bound fructose-epsilon-lysines and the glucose sensitivity of beta-cells for changes in Ca(2+) and insulin secretion, whereas it decreased the islet insulin content. After 3 wk, culture in G30 also strongly decreased beta-cell glucose responsiveness and preproinsulin mRNA levels, whereas it increased islet cell apoptosis. Although protein-bound fructose-epsilon-lysines were more abundant in Fn3k(-/-) vs. WT islets, islet cell survival and function and their glucotoxic alterations were almost identical in both types of islets, except for a lower level of apoptosis in Fn3k(-/-) islets cultured for 3 wk in G30. In comparison, d-ribose (1 wk) similarly decreased preproinsulin expression and beta-cell glucose responsiveness in both types of islets, whereas it increased apoptosis to a larger extent in Fn3k(-/-) vs. WT islets. We conclude that, despite its ability to reduce the glycation of intracellular islet proteins, FN3K is neither required for the maintenance of beta-cell survival and function under control conditions nor involved in protection against beta-cell glucotoxicity. The latter, therefore, occurs independently from the associated increase in the level of intracellular fructose-epsilon-lysines.
由于其高葡萄糖通透性,胰岛素分泌的胰腺β细胞在高葡萄糖浓度下可能经历强烈的细胞内蛋白质糖化。然而,它们可能部分受到果糖胺-3-激酶 (FN3K) 的保护,FN3K 是一种普遍存在的酶,可启动细胞内蛋白质的去糖化。为了验证该假说,我们培养了 Fn3k 敲除 (Fn3k(-/-)) 小鼠及其野生型 (WT) 同窝仔鼠的胰岛,在 10 或 30mmol/l 葡萄糖 (分别为 G10 或 G30) 存在的情况下培养 1-3 周,并测量蛋白质糖化、细胞凋亡、前胰岛素基因表达以及急性葡萄糖刺激下的 Ca(2+) 和胰岛素分泌反应。更有效的糖化剂 D-核糖 (25mmol/l) 被用作蛋白质糖化的阳性对照。在 WT 胰岛中,在 G30 中培养 1 周显著增加了可溶性细胞内蛋白结合的果糖-ε-赖氨酸的量和 β 细胞对 Ca(2+) 和胰岛素分泌变化的葡萄糖敏感性,而降低了胰岛胰岛素含量。3 周后,在 G30 中培养也强烈降低了 β 细胞对葡萄糖的反应性和前胰岛素 mRNA 水平,而增加了胰岛细胞凋亡。尽管 Fn3k(-/-) 胰岛中蛋白结合的果糖-ε-赖氨酸更丰富,但在两种类型的胰岛中,胰岛细胞的存活和功能及其糖毒性改变几乎相同,除了在 G30 中培养 3 周的 Fn3k(-/-) 胰岛中凋亡水平较低。相比之下,D-核糖 (1 周) 以相似的方式降低了两种类型胰岛中的前胰岛素表达和 β 细胞对葡萄糖的反应性,而在 Fn3k(-/-) 胰岛中增加凋亡的程度更大。我们得出结论,尽管 FN3K 能够降低细胞内胰岛蛋白的糖化,但在控制条件下维持 β 细胞的存活和功能既不需要 FN3K,也不参与保护 β 细胞免受糖毒性。后者因此独立于细胞内果糖-ε-赖氨酸水平的相关增加而发生。