Suppr超能文献

鉴定大肠杆菌胱硫醚β-裂合酶活性位点残基 R58、R59、D116、W340 和 R372 的定点突变体。

Characterization of site-directed mutants of residues R58, R59, D116, W340 and R372 in the active site of E. coli cystathionine beta-lyase.

机构信息

Department of Biology, Carleton University, Ottawa K1S 5B6, Canada.

出版信息

Protein Sci. 2010 Mar;19(3):383-91. doi: 10.1002/pro.308.

Abstract

Cystathionine beta-lyase (CBL) catalyzes the hydrolysis of L-cystathionine (L-Cth) to produce L-homocysteine, pyruvate, and ammonia. A series of active-site mutants of Escherichia coli CBL (eCBL) was constructed to investigate the roles of residues R58, R59, D116, W340, and R372 in catalysis and inhibition by aminoethoxyvinylglycine (AVG). The effects of these mutations on the k(cat)/K(m) (L-Cth) for the beta-elimination reaction range from a reduction of only 3-fold for D116A and D116N to 6 orders of magnitude for the R372L and R372A mutants. The order of importance of these residues for the hydrolysis of L-Cth is: R372 >> R58 > W340 approximately R59 > D116. Comparison of the kinetic parameters for L-Cth hydrolysis with those for inhibition of eCBL by AVG demonstrates that residue R58 tethers the distal carboxylate group of the substrate and confirms that residues W340 and R372 interact with the alpha-carboxylate moiety. The increase in the pK(a) of the acidic limb and decrease in the pK(a) of the basic limb of the k(cat)/K(m) (L-Cth) versus pH profiles of the R58K and R58A mutants, respectively, support a role for this residue in modulating the pK(a) of an active-site residue.

摘要

胱硫醚β-裂合酶(CBL)催化 L-胱硫醚(L-Cth)水解生成 L-同型半胱氨酸、丙酮酸和氨。构建了一系列大肠杆菌 CBL(eCBL)的活性位点突变体,以研究残基 R58、R59、D116、W340 和 R372 在催化和氨基乙氧基乙烯基甘氨酸(AVG)抑制中的作用。这些突变对β消除反应的 k(cat)/K(m)(L-Cth)的影响范围从 D116A 和 D116N 的仅降低 3 倍到 R372L 和 R372A 突变体的 6 个数量级。这些残基对 L-Cth 水解的重要性顺序为:R372>R58>W340≈R59>D116。L-Cth 水解的动力学参数与 AVG 抑制 eCBL 的动力学参数的比较表明,残基 R58 束缚了底物的远端羧酸盐基团,并证实了残基 W340 和 R372 与α-羧酸盐部分相互作用。R58K 和 R58A 突变体的 k(cat)/K(m)(L-Cth)与 pH 关系曲线的酸性臂的 pK(a)增加和碱性臂的 pK(a)降低,分别支持该残基在调节活性位点残基的 pK(a)方面的作用。

相似文献

3
Exploration of the six tryptophan residues of Escherichia coli cystathionine β-lyase as probes of enzyme conformational change.
Arch Biochem Biophys. 2013 Oct 15;538(2):138-44. doi: 10.1016/j.abb.2013.07.006. Epub 2013 Aug 19.
4
A role for glutamate-333 of Saccharomyces cerevisiae cystathionine γ-lyase as a determinant of specificity.
Biochim Biophys Acta. 2014 Feb;1844(2):465-72. doi: 10.1016/j.bbapap.2013.11.012. Epub 2013 Nov 28.
7
Exploration of the active site of Escherichia coli cystathionine γ-synthase.
Protein Sci. 2012 Nov;21(11):1662-71. doi: 10.1002/pro.2135.

引用本文的文献

1
Mechanistic and Evolutionary Insights from the Reciprocal Promiscuity of Two Pyridoxal Phosphate-dependent Enzymes.
J Biol Chem. 2016 Sep 16;291(38):19873-87. doi: 10.1074/jbc.M116.739557. Epub 2016 Jul 29.
3
Characterization of C-S Lyase from C. diphtheriae: a possible target for new antimicrobial drugs.
Biomed Res Int. 2013;2013:701536. doi: 10.1155/2013/701536. Epub 2013 Sep 11.
4
Exploration of the active site of Escherichia coli cystathionine γ-synthase.
Protein Sci. 2012 Nov;21(11):1662-71. doi: 10.1002/pro.2135.

本文引用的文献

2
Characterization of the S289A,D mutants of yeast cystathionine beta-synthase.
Biochim Biophys Acta. 2009 Jun;1794(6):892-7. doi: 10.1016/j.bbapap.2009.02.007. Epub 2009 Mar 2.
4
The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity.
Arch Biochem Biophys. 2005 Jan 1;433(1):166-75. doi: 10.1016/j.abb.2004.08.024.
7
Tissue sulfhydryl groups.
Arch Biochem Biophys. 1959 May;82(1):70-7. doi: 10.1016/0003-9861(59)90090-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验