Suppr超能文献

鸟类胚胎面部结构的比较基因表达分析揭示了人类颅面疾病的新候选基因。

Comparative gene expression analysis of avian embryonic facial structures reveals new candidates for human craniofacial disorders.

机构信息

Department of Plastic and Reconstructive Surgery, Hagey Laboratory, Stanford University, Stanford, CA 94305, USA.

出版信息

Hum Mol Genet. 2010 Mar 1;19(5):920-30. doi: 10.1093/hmg/ddp559. Epub 2009 Dec 16.

Abstract

Mammals and birds have common embryological facial structures, and appear to employ the same molecular genetic developmental toolkit. We utilized natural variation found in bird beaks to investigate what genes drive vertebrate facial morphogenesis. We employed cross-species microarrays to describe the molecular genetic signatures, developmental signaling pathways and the spectrum of transcription factor (TF) gene expression changes that differ between cranial neural crest cells in the developing beaks of ducks, quails and chickens. Surprisingly, we observed that the neural crest cells established a species-specific TF gene expression profile that predates morphological differences between the species. A total of 232 genes were differentially expressed between the three species. Twenty-two of these genes, including Fgfr2, Jagged2, Msx2, Satb2 and Tgfb3, have been previously implicated in a variety of mammalian craniofacial defects. Seventy-two of the differentially expressed genes overlap with un-cloned loci for human craniofacial disorders, suggesting that our data will provide a valuable candidate gene resource for human craniofacial genetics. The most dramatic changes between species were in the Wnt signaling pathway, including a 20-fold up-regulation of Dkk2, Fzd1 and Wnt1 in the duck compared with the other two species. We functionally validated these changes by demonstrating that spatial domains of Wnt activity differ in avian beaks, and that Wnt signals regulate Bmp pathway activity and promote regional growth in facial prominences. This study is the first of its kind, extending on previous work in Darwin's finches and provides the first large-scale insights into cross-species facial morphogenesis.

摘要

哺乳动物和鸟类具有共同的胚胎面部结构,并且似乎采用相同的分子遗传发育工具包。我们利用鸟类喙部的自然变异来研究哪些基因驱动脊椎动物面部形态发生。我们利用跨物种微阵列来描述分子遗传特征、发育信号通路以及转录因子 (TF) 基因表达变化的谱,这些变化在鸭、鹌鹑和鸡的发育喙中的颅神经嵴细胞之间有所不同。令人惊讶的是,我们观察到神经嵴细胞建立了一种特定于物种的 TF 基因表达谱,该谱先于物种之间的形态差异。三种物种之间有 232 个基因差异表达。其中 22 个基因,包括 Fgfr2、Jagged2、Msx2、Satb2 和 Tgfb3,以前曾与各种哺乳动物颅面缺陷有关。72 个差异表达的基因与人类颅面疾病的未克隆基因座重叠,这表明我们的数据将为人类颅面遗传学提供有价值的候选基因资源。物种之间最显著的变化是 Wnt 信号通路,与其他两种物种相比,鸭中的 Dkk2、Fzd1 和 Wnt1 的表达上调了 20 倍。我们通过证明禽类喙中的 Wnt 活性的空间域不同,并且 Wnt 信号调节 Bmp 途径活性并促进面部突出部的区域生长,来验证这些变化的功能。这项研究是同类研究中的第一项,扩展了达尔文雀的先前工作,并首次提供了跨物种面部形态发生的大规模见解。

相似文献

2
Bmp4 and morphological variation of beaks in Darwin's finches.
Science. 2004 Sep 3;305(5689):1462-5. doi: 10.1126/science.1098095.
3
The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches.
Nature. 2006 Aug 3;442(7102):563-7. doi: 10.1038/nature04843.
5
Developmental biology. Bonemaking protein shapes beaks of Darwin's finches.
Science. 2004 Sep 3;305(5689):1383. doi: 10.1126/science.305.5689.1383.
7
Identification and functional analysis of novel facial patterning genes in the duplicated beak chicken embryo.
Dev Biol. 2015 Nov 15;407(2):275-88. doi: 10.1016/j.ydbio.2015.09.007. Epub 2015 Sep 16.
8
A cross-species analysis of microRNAs in the developing avian face.
PLoS One. 2012;7(4):e35111. doi: 10.1371/journal.pone.0035111. Epub 2012 Apr 16.
9
Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16222-7. doi: 10.1073/pnas.1206205109. Epub 2012 Sep 17.

引用本文的文献

1
Investigating possible shared single nucleotide polymorphisms in isolated oral cleft and non-cleft facial morphology.
Front Dent Med. 2025 Apr 15;6:1546295. doi: 10.3389/fdmed.2025.1546295. eCollection 2025.
2
4
5
Cellular, Molecular, and Genetic Mechanisms of Avian Beak Development and Evolution.
Annu Rev Genet. 2024 Nov;58(1):433-454. doi: 10.1146/annurev-genet-111523-101929. Epub 2024 Nov 14.
7
Morphometric and Genetic Description of Trophic Adaptations in Cichlid Fishes.
Biology (Basel). 2022 Aug 3;11(8):1165. doi: 10.3390/biology11081165.
8
Marsupials and Multi-Omics: Establishing New Comparative Models of Neural Crest Patterning and Craniofacial Development.
Front Cell Dev Biol. 2022 Jun 23;10:941168. doi: 10.3389/fcell.2022.941168. eCollection 2022.
9
Neural crest cells as a source of microevolutionary variation.
Semin Cell Dev Biol. 2023 Aug;145:42-51. doi: 10.1016/j.semcdb.2022.06.001. Epub 2022 Jun 16.
10
Wnt/β-catenin Signaling Controls Maxillofacial Hyperostosis.
J Dent Res. 2022 Jul;101(7):793-801. doi: 10.1177/00220345211067705. Epub 2022 Feb 3.

本文引用的文献

2
Roles for Bmp4 and CaM1 in shaping the jaw: evo-devo and beyond.
Annu Rev Genet. 2009;43:369-88. doi: 10.1146/annurev-genet-102808-114917.
3
Expression of WNT signalling pathway genes during chicken craniofacial development.
Dev Dyn. 2009 May;238(5):1150-65. doi: 10.1002/dvdy.21934.
4
Mutations in BMP4 are associated with subepithelial, microform, and overt cleft lip.
Am J Hum Genet. 2009 Mar;84(3):406-11. doi: 10.1016/j.ajhg.2009.02.002. Epub 2009 Feb 26.
5
Negative regulation of the Wnt signal by MM-1 through inhibiting expression of the wnt4 gene.
Exp Cell Res. 2008 Apr 1;314(6):1217-28. doi: 10.1016/j.yexcr.2008.01.002. Epub 2008 Jan 12.
6
Wnt signaling mediates regional specification in the vertebrate face.
Development. 2007 Sep;134(18):3283-95. doi: 10.1242/dev.005132. Epub 2007 Aug 15.
7
Large scale gene expression profiles of regenerating inner ear sensory epithelia.
PLoS One. 2007 Jun 13;2(6):e525. doi: 10.1371/journal.pone.0000525.
9
The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches.
Nature. 2006 Aug 3;442(7102):563-7. doi: 10.1038/nature04843.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验