Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
J Phys Chem A. 2010 Mar 11;114(9):3176-81. doi: 10.1021/jp9091688.
In this work we report on single photon vacuum ultraviolet photoionization of small silicon clusters (n = 1-7) produced via laser ablation of Si. The adiabatic ionization energies (AIE) are extracted from experimental photoionization efficiency (PIE) curves with the help of Franck-Condon simulations, used to interpret the shape and onset of the PIE curves. The obtained AIEs are (all energies are in eV) Si (8.13 +/- 0.05), Si(2) (7.92 +/- 0.05), Si(3) (8.12 +/- 0.05), Si(4) (8.2 +/- 0.1), Si(5) (7.96 +/- 0.07), Si(6) (7.8 +/- 0.1), and Si(7) (7.8 +/- 0.1). Most of the experimental AIE values are in good agreement with density functional electronic structure calculations. To explain observed deviations between the experimental and theoretical AIEs for Si(4) and Si(6), a theoretical search of different isomers of these species is performed. Electronic structure calculations aid in the interpretation of the a(2)Pi(u) state of Si(2)(+) dimer in the PIE spectrum. Time-dependent density functional theory calculations are performed to reveal the energies of electronically excited states in the cations for a number of Si clusters.
在这项工作中,我们报告了通过激光烧蚀 Si 产生的小硅团簇(n = 1-7)的单光子真空紫外光光致电离。通过 Franck-Condon 模拟从实验光致电离效率(PIE)曲线中提取绝热电离能(AIE),用于解释 PIE 曲线的形状和起始。得到的 AIE 是(所有能量均以 eV 为单位)Si(8.13 +/- 0.05)、Si(2)(7.92 +/- 0.05)、Si(3)(8.12 +/- 0.05)、Si(4)(8.2 +/- 0.1)、Si(5)(7.96 +/- 0.07)、Si(6)(7.8 +/- 0.1)和 Si(7)(7.8 +/- 0.1)。大多数实验 AIE 值与密度泛函电子结构计算吻合良好。为了解释 Si(4)和 Si(6)的实验和理论 AIE 之间的观察到的偏差,对这些物种的不同异构体进行了理论搜索。电子结构计算有助于解释 PIE 光谱中 Si(2)(+)二聚体 a(2)Pi(u)态。进行了含时密度泛函理论计算,以揭示阳离子中若干 Si 团簇中电子激发态的能量。