Division of Signaling Biology, Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.
J Biol Chem. 2010 Feb 19;285(8):5137-45. doi: 10.1074/jbc.M109.064691. Epub 2009 Dec 17.
Small guanosine triphosphatases (GTPases) become activated when GDP is replaced by GTP at the highly conserved nucleotide binding site. This process is intrinsically very slow in most GTPases but is significantly accelerated by guanine nucleotide exchange factors (GEFs). Nucleotide exchange in small GTPases has been widely studied using spectroscopy with fluorescently tagged nucleotides. However, this method suffers from effects of the bulky fluorescent moiety covalently attached to the nucleotide. Here, we have used a newly developed real-time NMR-based assay to monitor small GTPase RhoA nucleotide exchange by probing the RhoA conformation. We compared RhoA nucleotide exchange from GDP to GTP and GTP analogues in the absence and presence of the catalytic DH-PH domain of PDZ-RhoGEF (DH-PH(PRG)). Using the non-hydrolyzable analogue guanosine-5'-O-(3-thiotriphosphate), which we found to be a reliable mimic of GTP, we obtained an intrinsic nucleotide exchange rate of 5.5 x 10(-4) min(-1). This reaction is markedly accelerated to 1179 x 10(-4) min(-1) in the presence of DH-PH(PRG) at a ratio of 1:8,000 relative to RhoA. Mutagenesis studies confirmed the importance of Arg-868 near a conserved region (CR3) of the Dbl homology (DH) domain and revealed that Glu-741 in CR1 is critical for full activity of DH-PH(PRG), together suggesting that the catalytic mechanism of PDZ-RhoGEF is similar to Tiam1. Mutation of the single RhoA (E97A) residue that contacts the pleckstrin homology (PH) domain rendered the mutant 10-fold less sensitive to the activity of DH-PH(PRG). Interestingly, this mutation does not affect RhoA activation by leukemia-associated RhoGEF (LARG), indicating that the PH domains of these two homologous GEFs may play different roles.
小分子鸟苷三磷酸酶(GTPases)在高度保守的核苷酸结合位点上,当 GDP 被 GTP 取代时会被激活。在大多数 GTPases 中,这个过程本身非常缓慢,但被鸟嘌呤核苷酸交换因子(GEFs)显著加速。使用带有荧光标记核苷酸的光谱学方法广泛研究了小分子 GTPase 的核苷酸交换。然而,这种方法受到与核苷酸共价连接的庞大荧光部分的影响。在这里,我们使用新开发的基于实时 NMR 的测定法通过探测 RhoA 构象来监测小分子 GTPase RhoA 的核苷酸交换。我们比较了 GDP 到 GTP 和 GTP 类似物的 RhoA 核苷酸交换,以及在不存在和存在 PDZ-RhoGEF 的催化 DH-PH 结构域(DH-PH(PRG))的情况下。使用非水解类似物鸟苷-5'-O-(3-硫代三磷酸),我们发现它是 GTP 的可靠模拟物,我们获得了 5.5 x 10(-4) min(-1)的固有核苷酸交换率。在存在 DH-PH(PRG)的情况下,反应速度明显加快至 1179 x 10(-4) min(-1),与 RhoA 的比例为 1:8000。突变研究证实了靠近 Dbl 同源(DH)结构域保守区域(CR3)的 Arg-868 的重要性,并揭示了 CR1 中的 Glu-741 对 DH-PH(PRG)的完全活性至关重要,共同表明 PDZ-RhoGEF 的催化机制与 Tiam1 相似。突变与 pleckstrin 同源(PH)结构域接触的单个 RhoA(E97A)残基使突变体对 DH-PH(PRG)的活性敏感降低了 10 倍。有趣的是,这种突变不会影响 RhoA 被白血病相关 RhoGEF(LARG)激活,表明这两种同源 GEF 的 PH 结构域可能发挥不同的作用。