Suppr超能文献

利用 NMR 光谱预测牙科甲基丙烯酸酯单体的还原型谷胱甘肽 (GSH) 反应性 - 毒性与 GSH 反应性之间的关系。

Prediction of the reduced glutathione (GSH) reactivity of dental methacrylate monomers using NMR spectra - Relationship between toxicity and GSH reactivity.

机构信息

Meikai University School of Dentistry, Saitama 350-0283, Japan.

出版信息

Dent Mater J. 2009 Nov;28(6):722-9. doi: 10.4012/dmj.28.722.

Abstract

It has been established that the toxicity of acrylate and methacrylate monomers is driven by their reactivity towards glutathione (GSH). With this relationship, the objective of this study was to predict the GSH reactivity of dental methacrylate monomers, and hence their toxicity, using the (13)C-NMR chemical shifts of beta-carbon (delta(Cbeta)) and the (1)H-NMR shifts of the protons attached to beta-carbon (delta(Ha), delta(Hb)). The different nucleophiles were chosen to compare the different nucleophilic reactions involving acrylate and methacrylate monomers. In conjunction with the use of literature data for monomer/GSH reactivity, significant linear relationships between GSH reactivity (log K) and delta(Cbeta )or delta(Ha )were observed (p<0.001). As for the oral LD(50 )values of some dental dimethacrylates in mice, they were estimated using linear regression curve fitting of GSH reactivity-toxicity response data. Results revealed an acceptable correlation between the oral LD(50 )values of acrylates and methacrylates and GSH reactivity (p<0.05, outlier: HEMA). In conclusion, the present findings suggested that NMR spectra might be useful for predicting the toxicity of dental methacrylates.

摘要

已有研究证实,丙烯酸盐和甲基丙烯酸盐单体的毒性与其对谷胱甘肽(GSH)的反应性有关。基于这一关系,本研究旨在通过β-碳(δ(Cbeta))的(13)C-NMR 化学位移和β-碳上连接的质子的(1)H-NMR 位移(δ(Ha),δ(Hb))来预测牙科甲基丙烯酸盐单体的 GSH 反应性,从而预测其毒性。选择不同的亲核试剂来比较涉及丙烯酸盐和甲基丙烯酸盐单体的不同亲核反应。结合文献中单体/GSH 反应性的数据,观察到 GSH 反应性(log K)与 δ(Cbeta)或 δ(Ha)之间存在显著的线性关系(p<0.001)。对于一些在小鼠中具有口腔 LD(50)值的牙科二甲基丙烯酸盐,使用 GSH 反应性-毒性响应数据的线性回归曲线拟合来估计其 LD(50)值。结果表明,丙烯酸盐和甲基丙烯酸盐的口腔 LD(50)值与 GSH 反应性之间存在可接受的相关性(p<0.05,异常值:HEMA)。总之,本研究结果表明,NMR 谱可能有助于预测牙科甲基丙烯酸盐的毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验