The Simpson Centre for Health Services Research, University of New South Wales, Sydney, New South Wales, Australia.
Trials. 2009 Dec 19;10:117. doi: 10.1186/1745-6215-10-117.
To compare two approaches to the statistical analysis of the relationship between the baseline incidence of adverse events and the effect of medical emergency teams (METs).
Using data from a cluster randomized controlled trial (the MERIT study), we analysed the relationship between the baseline incidence of adverse events and its change from baseline to the MET activation phase using quadratic modelling techniques. We compared the findings with those obtained with conventional subgroup analysis.
Using linear and quadratic modelling techniques, we found that each unit increase in the baseline incidence of adverse events in MET hospitals was associated with a 0.59 unit subsequent reduction in adverse events (95%CI: 0.33 to 0.86) after MET implementation and activation. This applied to cardiac arrests (0.74; 95%CI: 0.52 to 0.95), unplanned ICU admissions (0.56; 95%CI: 0.26 to 0.85) and unexpected deaths (0.68; 95%CI: 0.45 to 0.90). Control hospitals showed a similar reduction only for cardiac arrests (0.95; 95%CI: 0.56 to 1.32). Comparison using conventional subgroup analysis, on the other hand, detected no significant difference between MET and control hospitals.
Our study showed that, in the MERIT study, when there was dependence of treatment effect on baseline performance, an approach based on regression modelling helped illustrate the nature and magnitude of such dependence while sub-group analysis did not. The ability to assess the nature and magnitude of such dependence may have policy implications. Regression technique may thus prove useful in analysing data when there is a conditional treatment effect.
比较两种分析基线不良事件发生率与医疗急救团队(MET)效果之间关系的方法。
使用一项整群随机对照试验(MERIT 研究)的数据,我们使用二次建模技术分析了基线不良事件发生率及其从基线到 MET 激活阶段的变化之间的关系。我们将研究结果与常规亚组分析的结果进行了比较。
使用线性和二次建模技术,我们发现,MET 医院基线不良事件发生率每增加一个单位,MET 实施和激活后不良事件就会减少 0.59 个单位(95%CI:0.33 至 0.86)。这适用于心脏骤停(0.74;95%CI:0.52 至 0.95)、非计划性 ICU 入院(0.56;95%CI:0.26 至 0.85)和意外死亡(0.68;95%CI:0.45 至 0.90)。对照医院仅对心脏骤停显示出类似的减少(0.95;95%CI:0.56 至 1.32)。另一方面,使用常规亚组分析进行比较,并未发现 MET 和对照医院之间存在显著差异。
我们的研究表明,在 MERIT 研究中,当治疗效果取决于基线表现时,基于回归建模的方法有助于说明这种依赖性的性质和程度,而亚组分析则无法做到这一点。评估这种依赖性的性质和程度的能力可能具有政策意义。因此,回归技术在存在条件治疗效果时可能对数据分析很有用。