Suppr超能文献

心肌成纤维细胞中细胞骨架测地线穹窿形成的力学和空间决定因素。

Mechanical and spatial determinants of cytoskeletal geodesic dome formation in cardiac fibroblasts.

机构信息

Department of Biomedical Engineering, Stony Brook University, HSC T18-030, Stony Brook, NY 11794-8181, USA.

出版信息

Integr Biol (Camb). 2009 Feb;1(2):212-9. doi: 10.1039/b818874b. Epub 2009 Jan 6.

Abstract

This study tests the hypothesis that the cell cytoskeletal (CSK) network can rearrange from geodesic dome type structures to stress fibers in response to microenvironmental cues. The CSK geodesic domes are highly organized actin microarchitectures within the cell, consisting of ordered polygonal elements. We studied primary neonatal rat cardiac fibroblasts. The cues used to trigger the interconversion between the two CSK architectures (geodesic domes and stress fibers) included factors affecting spatial order and the degree of CSK tension in the cells. Microfabricated three-dimensional substrates with micrometre sized grooves and peaks were used to alter the spatial order of cell growth in culture. CSK tension was modified by 2,3-butanedione 2-monoxime (BDM), cytochalasin D and the hyphae of Candida albicans. CSK geodesic domes occurred spontaneously in about 20% of the neonatal rat cardiac fibroblasts used in this study. Microfabricated structured surfaces produced anisotropy in the cell CSK and effectively converted geodesic domes into stress fibers in a dose-dependent manner (dependence on the period of the features). Affectors of actin structure, inhibitors of CSK tension and cell motility, e.g. BDM, cytochalasin D and the hyphae of C. albicans, suppressed or eliminated the geodesic domes. Our data suggest that the geodesic domes, similar to actin stress fibers, require maintenance of CSK integrity and tension. However, microenvironments that promote structural anisotropy in tensed cells cause the transformation of the geodesic domes into stress fibers, consistent with topographic cell guidance and some previous CSK model predictions.

摘要

本研究检验了这样一个假设,即细胞细胞骨架 (CSK) 网络可以根据微环境线索从测地线穹顶结构重新排列为应力纤维。CSK 测地线穹顶是细胞内高度组织化的肌动蛋白微结构,由有序的多边形元素组成。我们研究了原代新生大鼠心脏成纤维细胞。用于触发两种 CSK 结构(测地线穹顶和应力纤维)之间相互转换的线索包括影响细胞内 CSK 空间有序性和张力程度的因素。使用具有微米大小的凹槽和峰的微加工三维基底来改变细胞在培养中的空间生长秩序。通过 2,3-丁二酮 2-单肟 (BDM)、细胞松弛素 D 和白色念珠菌的菌丝来改变 CSK 张力。CSK 测地线穹顶自发出现在本研究中使用的约 20%的新生大鼠心脏成纤维细胞中。微加工结构化表面在细胞 CSK 中产生各向异性,并以剂量依赖性方式(依赖于特征的周期)有效地将测地线穹顶转化为应力纤维。肌动蛋白结构的效应物、CSK 张力和细胞迁移的抑制剂,如 BDM、细胞松弛素 D 和白色念珠菌的菌丝,抑制或消除了测地线穹顶。我们的数据表明,测地线穹顶与肌动蛋白应力纤维类似,需要维持 CSK 的完整性和张力。然而,促进紧张细胞结构各向异性的微环境导致测地线穹顶转化为应力纤维,这与地形细胞导向和一些先前的 CSK 模型预测一致。

相似文献

1
Mechanical and spatial determinants of cytoskeletal geodesic dome formation in cardiac fibroblasts.
Integr Biol (Camb). 2009 Feb;1(2):212-9. doi: 10.1039/b818874b. Epub 2009 Jan 6.
2
Dynamics of contacts between lamellae of fibroblasts: essential role of the actin cytoskeleton.
Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4362-7. doi: 10.1073/pnas.95.8.4362.
3
Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells?
Am J Physiol. 1998 May;274(5):C1283-9. doi: 10.1152/ajpcell.1998.274.5.C1283.
7
Abolishing myofibroblast arrhythmogeneicity by pharmacological ablation of α-smooth muscle actin containing stress fibers.
Circ Res. 2011 Oct 28;109(10):1120-31. doi: 10.1161/CIRCRESAHA.111.244798. Epub 2011 Sep 15.
10
Mechanical interactions among cytoskeletal filaments.
Hypertension. 1998 Jul;32(1):162-5. doi: 10.1161/01.hyp.32.1.162.

引用本文的文献

4
Cross-linked actin networks (CLANs) in glaucoma.
Exp Eye Res. 2017 Jun;159:16-22. doi: 10.1016/j.exer.2017.02.010. Epub 2017 Feb 24.
5
Regulatory Roles of Fluctuation-Driven Mechanotransduction in Cell Function.
Physiology (Bethesda). 2016 Sep;31(5):346-58. doi: 10.1152/physiol.00051.2015.
7
A computational model of the response of adherent cells to stretch and changes in substrate stiffness.
J Appl Physiol (1985). 2014 Apr 1;116(7):825-34. doi: 10.1152/japplphysiol.00962.2013. Epub 2014 Jan 9.
8
Stress transmission within the cell.
Compr Physiol. 2011 Jan;1(1):499-524. doi: 10.1002/cphy.c100019.
9
Genetically encoded force sensors for measuring mechanical forces in proteins.
Commun Integr Biol. 2011 Jul;4(4):385-90. doi: 10.4161/cib.4.4.15505. Epub 2011 Jul 1.

本文引用的文献

1
Filamentous network mechanics and active contractility determine cell and tissue shape.
Biophys J. 2008 Oct;95(7):3488-96. doi: 10.1529/biophysj.108.134296. Epub 2008 Jul 3.
2
3-D nanomechanics of an erythrocyte junctional complex in equibiaxial and anisotropic deformations.
Ann Biomed Eng. 2005 Oct;33(10):1387-404. doi: 10.1007/s10439-005-4698-y.
3
Acoustic micromachining of three-dimensional surfaces for biological applications.
Lab Chip. 2005 Feb;5(2):179-83. doi: 10.1039/b409478f. Epub 2004 Nov 22.
4
Scaffold topography alters intracellular calcium dynamics in cultured cardiomyocyte networks.
Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1276-85. doi: 10.1152/ajpheart.01120.2003. Epub 2004 Apr 22.
5
Cardiac cell networks on elastic microgrooved scaffolds.
IEEE Eng Med Biol Mag. 2003 Sep-Oct;22(5):108-12. doi: 10.1109/memb.2003.1256279.
6
Rapid de-localization of actin leading edge components with BDM treatment.
BMC Cell Biol. 2003 Jun 3;4:5. doi: 10.1186/1471-2121-4-5.
7
A prestressed cable network model of the adherent cell cytoskeleton.
Biophys J. 2003 Feb;84(2 Pt 1):1328-36. doi: 10.1016/S0006-3495(03)74948-0.
8
Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation.
Am J Physiol Cell Physiol. 2002 Oct;283(4):C1219-27. doi: 10.1152/ajpcell.00502.2001.
9
Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells.
Am J Physiol Cell Physiol. 2002 Mar;282(3):C606-16. doi: 10.1152/ajpcell.00269.2001.
10
Mechanical behavior in living cells consistent with the tensegrity model.
Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7765-70. doi: 10.1073/pnas.141199598.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验