Laboratorio de Química Computacional y Teórica, Facultad de Química, Universidad de La Habana, 10400 Havana, Cuba.
Phys Chem Chem Phys. 2010 Jan 14;12(2):442-52. doi: 10.1039/b914699g. Epub 2009 Nov 16.
O(2) adsorption in proton, sodium and copper exchanged chabazite has been studied using periodic and cluster approaches by means of density functional theory. The Grimme's correction has been used to include the dispersion contribution to B3LYP. Two cation locations have been considered: one with the cation at the six-membered ring (MCHA(I)) and the other with the cation at the 8-membered ring (MCHA(IV)). The O(2)-HCHA and O(2)-NaCHA adsorption complexes present a eta(1)-O(2) bent coordination. The adsorption energies, which are due to dispersion, are between -15 and -19 kJ mol(-1), in agreement with the experimental values. On the other hand, the O(2) coordination to CuCHA is through a eta(2)-side-on mode with a square planar coordination around the metal center. This structure favors the Cu d -->pi* O(2) charge transfer which becomes the predominant stabilizing factor. The adsorption of singlet states of O(2) in HCHA and NaCHA, modeled with an ONIOM M12T:48T, is of the same nature as that of the ground state, and only the highest in energy (1)Sigma is significantly more stabilized in MCHA than the triplet state by 14 to 24 kJ mol(-1). The adsorption of singlet O(2) in Cu exchanged zeolites presents a higher electron transfer from Cu(+) to O(2) than that calculated for the triplet species and thus both singlet states are stabilized with respect to the ground state O(2). Generally, singlet oxygen appears more attractive to active zeolite models than those calculated with triplet oxygen, indicating a source of oxidative efficiency for designed structures.
O(2) 在质子、钠和铜交换丝光沸石中的吸附已通过周期性和团簇方法,利用密度泛函理论进行了研究。采用 Grimme 修正包括了 B3LYP 的色散贡献。考虑了两种阳离子位置:一种是阳离子位于六元环(MCHA(I)),另一种是阳离子位于八元环(MCHA(IV))。O(2)-HCHA 和 O(2)-NaCHA 吸附配合物呈现出 eta(1)-O(2) 弯曲配位。由于色散引起的吸附能在-15 到-19 kJ mol(-1)之间,与实验值一致。另一方面,O(2) 与 CuCHA 的配位是通过 eta(2)-侧接模式,在金属中心周围形成平面四方配位。这种结构有利于 Cu d -->pi* O(2) 电荷转移,成为主要的稳定因素。通过 ONIOM M12T:48T 对 HCHA 和 NaCHA 中 O(2) 的单重态进行建模,其吸附与基态的性质相同,只有在 MCHA 中单重态(1Sigma)比三重态高出 14 到 24 kJ mol(-1)。在铜交换沸石中,O(2) 的单重态吸附表现出比三重态物种更高的 Cu(+) 向 O(2) 的电子转移,因此与基态 O(2) 相比,两种单重态都得到了稳定。一般来说,与计算的三重态氧相比,单重态氧对活性沸石模型更具吸引力,这表明设计结构具有氧化效率的来源。