Department of Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy.
Dalton Trans. 2009 Dec 28(48):10742-56. doi: 10.1039/b911393b. Epub 2009 Aug 27.
The conjugation of porphyrins to metal fragments is a strategy for making new compounds that are expected to combine the phototoxicity and the tumour-localization properties of the porphyrin chromophore with the cytotoxicity of the metal fragment for additive antitumour effect. We report here the preparation of new classes of porphyrin-ruthenium conjugates with potential bio-medical applications. Ruthenium was chosen because several Ru compounds have shown promising anticancer activity. The conjugation with the porphyrin moiety was accomplished either through peripheral pyridyl rings (e.g.meso-4'-tetrapyridylporphyrin, 4'TPyP) or through bpy units (e.g.meso-(p-bpy-phenyl)porphyrins, bpy(n)-PPs, n = 1-4). The number of Ru fragments attached to the porphyrins ranges from 1 to 4 and the total charge of the conjugates from -4 to +8. Different types of peripheral fragments, both Ru(III) and Ru(II), have been used: in some cases they are structurally similar to established anticancer compounds. Examples are Na[4'TPyP{trans-RuCl(4)(dmso-S)}(4)] (2), that bears four NAMI-type Ru(III) fragments, or [4'TPyP{Ru([9]aneS3)(en)}(4)]CF(3)SO(3) (3) and [bpy(4)-PP{Ru([9]aneS3)(dmso-S)}(4)]CF(3)SO(3) (9) (en = ethane-1,2-diamine, [9]aneS3 = 1,4,7-trithiacyclononane) that have four half-sandwich Ru(II) compounds. The Ru fragments may either contain one or more labile ligands, such as in 2 or in 9, or be coordinatively saturated and substitutionally inert, such as in 3 or in [bpy(4)-PP{Ru([12]aneS4)}(4)]CF(3)SO(3) (11) ([12]aneS4 = 1,4,7,10-tetrathiacyclododecane). Most of the ruthenium-porphyrin conjugates described in this work are soluble--at least moderately--in aqueous solution and are thus suitable for biological investigations, in particular for cytotoxicity and photo-cytotoxicity tests.
卟啉与金属片段的连接是一种制备新化合物的策略,预期这些新化合物将结合卟啉生色团的光毒性和肿瘤定位特性以及金属片段的细胞毒性,从而产生附加的抗肿瘤效果。我们在此报告了具有潜在生物医学应用的新型卟啉-钌缀合物的制备。选择钌是因为一些 Ru 化合物已显示出有希望的抗癌活性。与卟啉部分的连接是通过外围吡啶环(例如,meso-4'-四吡啶基卟啉,4'TPyP)或通过 bpy 单元(例如,meso-(p-bpy-苯基)卟啉,bpy(n)-PPs,n = 1-4)来完成的。连接到卟啉上的 Ru 片段的数量从 1 到 4 不等,缀合物的总电荷从-4 到+8。使用了不同类型的外围片段,包括 Ru(III)和 Ru(II):在某些情况下,它们与已建立的抗癌化合物在结构上相似。例如,Na[4'TPyP{trans-RuCl(4)(dmso-S)}(4)](2),它带有四个 NAMI 型 Ru(III)片段,或[4'TPyP{Ru([9]aneS3)(en)}(4)]CF(3)SO(3)(3)和[bpy(4)-PP{Ru([9]aneS3)(dmso-S)}(4)]CF(3)SO(3)(9)(en = 乙烷-1,2-二胺,[9]aneS3 = 1,4,7-三硫杂环壬烷),它们具有四个半夹心 Ru(II)化合物。Ru 片段可以含有一个或多个不稳定配体,例如在 2 或 9 中,或者可以是配位饱和且取代惰性的,例如在 3 或[bpy(4)-PP{Ru([12]aneS4)}(4)]CF(3)SO(3)(11)([12]aneS4 = 1,4,7,10-四硫杂环十二烷)中。本工作中描述的大多数钌-卟啉缀合物在水溶液中至少是适度可溶的,因此适用于生物学研究,特别是用于细胞毒性和光细胞毒性测试。