Department of Inorganic Chemistry, University of Zürich, 8057 Zürich, Switzerland.
Chemistry. 2010 Feb 1;16(5):1521-31. doi: 10.1002/chem.200902091.
Pincer-type palladium complexes are among the most active Heck catalysts. Due to their exceptionally high thermal stability and the fact that they contain Pd(II) centers, controversial Pd(II)/Pd(IV) cycles have been often proposed as potential catalytic mechanisms. However, pincer-type Pd(IV) intermediates have never been experimentally observed, and computational studies to support the proposed Pd(II)/Pd(IV) mechanisms with pincer-type catalysts have never been carried out. In this computational study the feasibility of potential catalytic cycles involving Pd(IV) intermediates was explored. Density functional calculations were performed on experimentally applied aminophosphine-, phosphine-, and phosphite-based pincer-type Heck catalysts with styrene and phenyl bromide as substrates and (E)-stilbene as coupling product. The potential-energy surfaces were calculated in dimethylformamide (DMF) as solvent and demonstrate that Pd(II)/Pd(IV) mechanisms are thermally accessible and thus a true alternative to formation of palladium nanoparticles. Initial reaction steps of the lowest energy path of the catalytic cycle of the Heck reaction include dissociation of the chloride ligands from the neutral pincer complexes [{2,6-C(6)H(3)(XPR(2))(2)}Pd(Cl)] [X=NH, R=piperidinyl (1 a); X=O, R=piperidinyl (1 b); X=O, R=iPr (1 c); X=CH(2), R=iPr (1 d)] to yield cationic, three-coordinate, T-shaped 14e(-) palladium intermediates of type {2,6-C(6)H(3)(XPR(2))(2)}Pd (2). An alternative reaction path to generate complexes of type 2 (relevant for electron-poor pincer complexes) includes initial coordination of styrene to 1 to yield styrene adducts [{2,6-C(6)H(3)(XPR(2))(2)}Pd(Cl)(CH(2)=CHPh)] (4) and consecutive dissociation of the chloride ligand to yield cationic square-planar styrene complexes {2,6-C(6)H(3)(XPR(2))(2)}Pd(CH(2)=CHPh) (6) and styrene. Cationic styrene adducts of type 6 were additionally found to be the resting states of the catalytic reaction. However, oxidative addition of phenyl bromide to 2 result in pentacoordinate Pd(IV) complexes of type {2,6-C(6)H(3)(XPR(2))(2)}Pd(Br)(C(6)H(5)) (11), which subsequently coordinate styrene (in trans position relative to the phenyl unit of the pincer cores) to yield hexacoordinate phenyl styrene complexes {2,6-C(6)H(3)(XPR(2))(2)}Pd(Br)(C(6)H(5))(CH(2)=CHPh) (12). Migration of the phenyl ligand to the olefinic bond gives cationic, pentacoordinate phenylethenyl complexes {2,6-C(6)H(3)(XPR(2))(2)}Pd(Br)(CHPhCH(2)Ph) (13). Subsequent beta-hydride elimination induces direct HBr liberation to yield cationic, square-planar (E)-stilbene complexes with general formula {2,6-C(6)H(3)(XPR(2))(2)}Pd(CHPh=CHPh) (14). Subsequent liberation of (E)-stilbene closes the catalytic cycle.
三爪钯配合物是最活跃的 Heck 催化剂之一。由于其极高的热稳定性以及它们含有 Pd(II)中心这一事实,经常提出有争议的 Pd(II)/Pd(IV)循环作为潜在的催化机制。然而,从未实验观察到三爪型 Pd(IV)中间体,并且从未进行过计算研究来支持使用三爪型催化剂的提议的 Pd(II)/Pd(IV)机制。在这项计算研究中,探索了涉及 Pd(IV)中间体的潜在催化循环的可行性。在实验中应用的氨基膦、膦和亚磷酸酯基三爪型 Heck 催化剂上进行了密度泛函计算,以苯乙烯和溴化苯基作为底物,以(E)-联苯作为偶联产物。在二甲基甲酰胺 (DMF) 作为溶剂的情况下计算了势能表面,并证明 Pd(II)/Pd(IV)机制在热学上是可及的,因此是形成钯纳米颗粒的真正替代方案。 Heck 反应催化循环的最低能量路径的初始反应步骤包括中性三爪配合物 [{2,6-C(6)H(3)(XPR(2))(2)}Pd(Cl)] [X=NH,R=哌啶基 (1 a);X=O,R=哌啶基 (1 b);X=O,R=iPr (1 c);X=CH(2),R=iPr (1 d)]中氯配体的解离,生成阳离子、三配位、T 型 14e(-)钯中间体 {2,6-C(6)H(3)(XPR(2))(2)}Pd (2)。生成型 2 化合物的替代反应途径(与缺电子三爪配合物有关)包括苯乙烯与 1 的初始配位,生成苯乙烯加合物 [{2,6-C(6)H(3)(XPR(2))(2)}Pd(Cl)(CH(2)=CHPh)] (4)和随后的氯配体解离,生成阳离子的方形平面苯乙烯配合物 {2,6-C(6)H(3)(XPR(2))(2)}Pd(CH(2)=CHPh) (6)和苯乙烯。还发现阳离子苯乙烯加合物 6 是催化反应的静止状态。然而,苯基溴化物对 2 的氧化加成导致五配位 Pd(IV)配合物 {2,6-C(6)H(3)(XPR(2))(2)}Pd(Br)(C(6)H(5)) (11)的生成,其随后与苯乙烯配位(相对于三爪核的苯基单元处于反式位置)生成六配位的苯基苯乙烯配合物 {2,6-C(6)H(3)(XPR(2))(2)}Pd(Br)(C(6)H(5))(CH(2)=CHPh) (12)。苯基配体向烯烃键的迁移生成阳离子、五配位的苯乙烯基配合物 {2,6-C(6)H(3)(XPR(2))(2)}Pd(Br)(CHPhCH(2)Ph) (13)。随后的β-氢化物消除诱导直接 HBr 释放,生成具有通用配方的阳离子、方形平面 (E)-联苯配合物 {2,6-C(6)H(3)(XPR(2))(2)}Pd(CHPh=CHPh) (14)。随后 (E)-联苯的释放关闭了催化循环。