Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, Berlin, Germany.
Chemistry. 2010 Feb 1;16(5):1679-90. doi: 10.1002/chem.200902259.
The properties of the intramolecular hydrogen bonds of doubly (15)N-labeled protonated sponges of the 1,8-bis(dimethylamino)naphthalene (DMANH(+)) type have been studied as a function of the solvent, counteranion, and temperature using low-temperature NMR spectroscopy. Information about the hydrogen-bond symmetries was obtained by the analysis of the chemical shifts delta(H) and delta(N) and the scalar coupling constants J(N,N), J(N,H), J(H,N) of the (15)NH(15)N hydrogen bonds. Whereas the individual couplings J(N,H) and J(H,N) were averaged by a fast intramolecular proton tautomerism between two forms, it is shown that the sum |J(N,H)+J(H,N)| generally represents a measure of the hydrogen-bond strength in a similar way to delta(H) and J(N,N). The NMR spectroscopic parameters of DMANH(+) and of 4-nitro-DMANH(+) are independent of the anion in the case of CD(3)CN, which indicates ion-pair dissociation in this solvent. By contrast, studies using CD(2)Cl(2), [D(8)]toluene as well as the freon mixture CDF(3)/CDF(2)Cl, which is liquid down to 100 K, revealed an influence of temperature and of the counteranions. Whereas a small counteranion such as trifluoroacetate perturbed the hydrogen bond, the large noncoordinating anion tetrakis[3,5-bis(trifluoromethyl)phenyl]borate B{C(6)H(3)(CF(3))(2)}(4) (BARF(-)), which exhibits a delocalized charge, made the hydrogen bond more symmetric. Lowering the temperature led to a similar symmetrization, an effect that is discussed in terms of solvent ordering at low temperature and differential solvent order/disorder at high temperatures. By contrast, toluene molecules that are ordered around the cation led to typical high-field shifts of the hydrogen-bonded proton as well as of those bound to carbon, an effect that is absent in the case of neutral NHN chelates.
本文采用低温 NMR 光谱法,研究了双(15)N 标记质子化 1,8-双(二甲氨基)萘(DMANH(+))型海绵的分子内氢键的性质,考察了溶剂、抗衡阴离子和温度的影响。通过对(15)NH(15)N 氢键的化学位移 δ(H)和 δ(N)以及标量耦合常数 J(N,N)、J(N,H)、J(H,N)的分析,得到了氢键对称性的信息。虽然单个耦合 J(N,H)和 J(H,N)通过两种形式之间的快速分子内质子互变异构作用被平均,但结果表明,和 δ(H)和 J(N,N)一样,|J(N,H)+J(H,N)|通常代表氢键强度的度量。在 CD(3)CN 中,DMANH(+)和 4-硝基-DMANH(+)的 NMR 光谱参数与阴离子无关,这表明在该溶剂中存在离子对解离。相比之下,使用 CD(2)Cl(2)、[D(8)]甲苯以及液态至 100 K 的氟利昂混合物 CDF(3)/CDF(2)Cl 进行的研究表明,温度和抗衡阴离子都有影响。尽管像三氟乙酸盐这样的小抗衡阴离子会扰乱氢键,但大的非配位阴离子四[3,5-双(三氟甲基)苯基]硼酸盐 B[{C(6)H(3)(CF(3))(2)}(4)](-)(BARF(-)),具有离域电荷,使氢键更对称。降低温度会导致类似的对称化,这一效应可以用低温下溶剂的有序性和高温下溶剂的有序性/无序性的差异来解释。相比之下,甲苯分子围绕阳离子有序排列,导致氢键质子以及与碳结合的质子发生典型的高场位移,而中性 NHN 螯合物则不存在这种效应。