Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
J Phys Chem B. 2010 Nov 18;114(45):14223-32. doi: 10.1021/jp909002d. Epub 2009 Dec 21.
Singlet exciton fission, a process that converts one singlet exciton to a pair of triplet excitons, has the potential to enhance the efficiency of both bulk heterojunction and dye-sensitized solar cells and is understood in crystals but not well understood in molecules. Previous studies have identified promising building blocks for singlet fission in molecular systems, but little work has investigated how these individual chromophores should be combined to maximize triplet yield. We consider the effects of chemically connecting two chromophores to create a coupled chromophore pair and compute how various structural choices alter the thermodynamic and kinetic parameters likely to control singlet fission yield. We use density functional theory to compute the electron transfer matrix element and the thermodynamics of fission for several promising chromophore pairs and find a trade-off between the desire to maximize this element and the desire to keep the singlet fission process exoergic. We identify promising molecular systems for singlet fission and suggest future experiments.
单线态激子裂变,即一个单线态激子转化为一对三线态激子的过程,有可能提高体异质结和染料敏化太阳能电池的效率,在晶体中已有研究,但在分子中了解甚少。先前的研究已经确定了分子系统中单线态裂变的有前途的构建模块,但很少有研究调查这些单独的发色团应该如何组合以最大限度地提高三重态产率。我们考虑通过化学连接两个发色团来创建耦合发色团对,并计算各种结构选择如何改变可能控制单线态裂变产率的热力学和动力学参数。我们使用密度泛函理论计算了几个有前途的发色团对的电子转移矩阵元以及裂变的热力学,并发现了最大化该元素与保持单线态裂变过程放能之间的权衡。我们确定了具有单线态裂变潜力的分子体系,并提出了未来的实验建议。