Eduard-Zintl Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 20, Darmstadt D-64287, Germany.
J Chem Phys. 2009 Dec 21;131(23):234904. doi: 10.1063/1.3274805.
In this work, our previous simulation method on the calculation of solubility of nonpolar solutes in nonpolar polymers [H. Eslami and F. Müller-Plathe, Macromolecules 40, 6413 (2007)] has been extended to the case of solubility calculation for water, as a polar penetrant, in poly(ethylene terephthalate), as a polar polymer. The chemical potentials of water in the polymer phase and in the gas phase have been calculated by employing our grand canonical ensemble molecular dynamics simulation method [H. Eslami and F. Müller-Plathe, J. Comput. Chem. 28, 1763 (2007)]. In this paper it is shown that performing just two independent simulations, one in the polymer phase and one in the vapor phase, in the grand canonical ensemble, is sufficient to calculate the phase coexistence point. The calculated solubilities, diffusion coefficients, and permeability coefficients are in good agreement with experimental data. Also the calculated glass transition temperature of the wet polymer is shown to be in a very good agreement with experiment.
在这项工作中,我们之前在非极性聚合物中非极性溶质溶解度计算的模拟方法[H. Eslami 和 F. Müller-Plathe,Macromolecules 40, 6413 (2007)]已扩展到水(一种极性渗透物)在聚对苯二甲酸乙二醇酯(一种极性聚合物)中溶解度计算的情况。水在聚合物相和气相中的化学势是通过我们的巨正则系综分子动力学模拟方法[H. Eslami 和 F. Müller-Plathe,J. Comput. Chem. 28, 1763 (2007)]计算得到的。本文表明,在巨正则系综中仅进行两个独立的模拟,一个在聚合物相中,一个在蒸气相中,就足以计算相共存点。计算得到的溶解度、扩散系数和渗透系数与实验数据吻合良好。同时,计算得到的湿聚合物的玻璃化转变温度与实验也非常吻合。