Suppr超能文献

通过核磁共振波谱技术揭示 G 蛋白偶联受体的结构与功能。

Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy.

机构信息

Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.

出版信息

Curr Pharm Des. 2009;15(35):4003-16. doi: 10.2174/138161209789824803.

Abstract

G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.

摘要

G 蛋白偶联受体(GPCRs)是一类在质膜上表达的信号蛋白大家族,它们参与了广泛的生理过程,因此被广泛用作许多治疗领域的药物靶点。在这种情况下,了解 GPCR 的结构和功能特性可以极大地促进调节剂化合物的合理设计。溶液和固态核磁共振(NMR)光谱代表了一种强大的方法,可以深入了解蛋白质的结构和动力学。尽管通过 NMR 解决膜蛋白结构所固有的困难,但这些方法已经成功应用,有时与分子建模结合,用于确定 GPCR 片段的结构、受体-配体相互作用的映射,以及与受体激活相关的构象变化的研究。在这篇综述中,我们总结了 NMR 在研究 GPCR 的结构和功能方面的贡献,同时也参考了已发表的晶体结构。

相似文献

1
Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy.
Curr Pharm Des. 2009;15(35):4003-16. doi: 10.2174/138161209789824803.
3
Dynamic G Protein-Coupled Receptor Signaling Probed by Solution NMR Spectroscopy.
Biochemistry. 2020 Mar 17;59(10):1065-1080. doi: 10.1021/acs.biochem.0c00032. Epub 2020 Mar 2.
4
Solution- and solid-state NMR studies of GPCRs and their ligands.
Biochim Biophys Acta. 2011 Jun;1808(6):1462-75. doi: 10.1016/j.bbamem.2010.10.003. Epub 2010 Oct 15.
5
Structural biology of human GPCR drugs and endogenous ligands - insights from NMR spectroscopy.
Methods. 2020 Aug 1;180:79-88. doi: 10.1016/j.ymeth.2020.08.008. Epub 2020 Sep 8.
6
GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures.
Nat Rev Drug Discov. 2019 Jan;18(1):59-82. doi: 10.1038/nrd.2018.180. Epub 2018 Nov 9.
7
NMR investigation of protein-ligand interactions for G-protein coupled receptors.
Future Med Chem. 2019 Jul;11(14):1811-1825. doi: 10.4155/fmc-2018-0312. Epub 2019 Jul 9.
10
Design and preparation of the class B G protein-coupled receptors GLP-1R and GCGR for F-NMR studies in solution.
FEBS J. 2021 Jul;288(13):4053-4063. doi: 10.1111/febs.15686. Epub 2021 Jan 9.

引用本文的文献

2
Fluorescence Imaging of Neural Activity, Neurochemical Dynamics, and Drug-Specific Receptor Conformation with Genetically Encoded Sensors.
Annu Rev Neurosci. 2022 Jul 8;45:273-294. doi: 10.1146/annurev-neuro-110520-031137. Epub 2022 Mar 22.
3
A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery.
Molecules. 2020 Jun 28;25(13):2974. doi: 10.3390/molecules25132974.
4
Small expression tags enhance bacterial expression of the first three transmembrane segments of the apelin receptor.
Biochem Cell Biol. 2014 Aug;92(4):269-78. doi: 10.1139/bcb-2014-0009. Epub 2014 May 23.
6
Homology modeling of class a G protein-coupled receptors.
Methods Mol Biol. 2012;857:259-79. doi: 10.1007/978-1-61779-588-6_11.
7
Lifting the lid on GPCRs: the role of extracellular loops.
Br J Pharmacol. 2012 Mar;165(6):1688-1703. doi: 10.1111/j.1476-5381.2011.01629.x.
9
G protein-coupled receptors involved in GnRH regulation: molecular insights from human disease.
Mol Cell Endocrinol. 2011 Oct 22;346(1-2):91-101. doi: 10.1016/j.mce.2011.06.022. Epub 2011 Jun 29.
10
Biophysical characterization of G-protein coupled receptor-peptide ligand binding.
Biochem Cell Biol. 2011 Apr;89(2):98-105. doi: 10.1139/o10-142.

本文引用的文献

1
Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation.
Nat Struct Mol Biol. 2009 Feb;16(2):168-75. doi: 10.1038/nsmb.1549. Epub 2009 Feb 1.
2
The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist.
Science. 2008 Nov 21;322(5905):1211-7. doi: 10.1126/science.1164772. Epub 2008 Oct 2.
3
Crystal structure of opsin in its G-protein-interacting conformation.
Nature. 2008 Sep 25;455(7212):497-502. doi: 10.1038/nature07330.
4
A low-molecular-weight antagonist for the human thyrotropin receptor with therapeutic potential for hyperthyroidism.
Endocrinology. 2008 Dec;149(12):5945-50. doi: 10.1210/en.2008-0836. Epub 2008 Jul 31.
5
Atomistic insights into rhodopsin activation from a dynamic model.
J Am Chem Soc. 2008 Aug 6;130(31):10141-9. doi: 10.1021/ja0765520. Epub 2008 Jul 12.
6
Structure of a beta1-adrenergic G-protein-coupled receptor.
Nature. 2008 Jul 24;454(7203):486-91. doi: 10.1038/nature07101. Epub 2008 Jun 25.
7
Crystal structure of the ligand-free G-protein-coupled receptor opsin.
Nature. 2008 Jul 10;454(7201):183-7. doi: 10.1038/nature07063. Epub 2008 Jun 18.
9
A virtual screen for diverse ligands: discovery of selective G protein-coupled receptor antagonists.
J Am Chem Soc. 2008 Apr 16;130(15):5115-23. doi: 10.1021/ja077620l. Epub 2008 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验