Suppr超能文献

葡萄花色苷还原酶的差向异构酶活性及其区域特异性氢转移。

The epimerase activity of anthocyanidin reductase from Vitis vinifera and its regiospecific hydride transfers.

机构信息

Chimie et Biologie des Membranes et des Nanoobjets UMR CNRS 5248, Bâtiment B8, Avenue des Facultés, Université Bordeaux 1, F-33405 Talence Cedex, France.

Laboratoire de Physiologie Moléculaire des Plantes, Centre de Biotechnologie de Borj-Cedria, B.P. 901, 2050 Hamman-Lif, Tunisia.

出版信息

Biol Chem. 2010 Feb-Mar;391(2-3):219-227. doi: 10.1515/bc.2010.015.

Abstract

Anthocyanidin reductase (ANR) from Vitis vinifera catalyzes an NADPH-dependent double reduction of anthocyanidins producing a mixture of (2S,3R)- and (2S,3S)-flavan-3-ols. At pH 7.5 and 30 degrees C, the first hydride transfer to anthocyanidin is irreversible, and no intermediate is released during catalysis. ANR reverse activity was assessed in the presence of excess NADP(+). Analysis of products by reverse phase and chiral phase HPLC demonstrates that ANR acts as a flavan-3-ol C(3)-epimerase under such conditions, but this is only observed with 2R-flavan-3-ols, not with 2S-flavan-3-ols produced by the enzyme in the forward reaction. In the presence of deuterated coenzyme 4S-NADPD, ANR transforms anthocyanidins into dideuterated flavan-3-ols. The regiospecificity of deuterium incorporation into catechin and afzelechin - derived from cyanidin and pelargonidin, respectively - was analyzed by liquid chromatography coupled with electro- spray ionization-tandem mass spectrometry (LC/ESI-MS/MS), and it was found that deuterium was always incorporated at C(2) and C(4). We conclude that C(3)-epimerization should be achieved by tautomerization between the two hydride transfers and that this produces a quinone methide intermediate which serves as C(4) target of the second hydride transfer, thereby avoiding any stereospecific modification of carbon 3. The inversion of C(2) stereochemistry required for 'reverse epimerization' suggests that the 2S configuration induces an irreversible product dissociation.

摘要

葡萄中花色苷还原酶(ANR)催化花色苷的 NADPH 依赖性双重还原,生成(2S,3R)-和(2S,3S)-黄烷-3-醇的混合物。在 pH7.5 和 30°C 下,向花色苷的第一次氢转移是不可逆的,并且在催化过程中没有中间体释放。在过量 NADP(+)存在下评估 ANR 的反向活性。通过反相和手性相 HPLC 分析产物表明,在这种条件下,ANR 作为黄烷-3-醇 C(3)-差向异构酶起作用,但这仅在 2R-黄烷-3-醇存在下观察到,而不是酶在正向反应中产生的 2S-黄烷-3-醇。在氘代辅酶 4S-NADPD 的存在下,ANR 将花色苷转化为二氘代黄烷-3-醇。通过液相色谱-电喷雾串联质谱(LC/ESI-MS/MS)分析来自氰花翠素和矢车菊素的儿茶素和根皮苷衍生的二氘代黄烷-3-醇的氘掺入的区域特异性,发现氘总是掺入 C(2)和 C(4)。我们得出结论,C(3)-差向异构化应该通过两个氢转移之间的互变异构化来实现,这产生了醌甲醚中间体,作为第二个氢转移的 C(4)靶标,从而避免了 C(3)的任何立体特异性修饰。“反向差向异构化”所需的 C(2)立体化学反转表明 2S 构型诱导不可逆的产物解离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验