Suppr超能文献

长链脂肪酸氧化过程中线粒体 H2O2 排放的电子传递链依赖和非依赖机制。

Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation.

机构信息

Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.

出版信息

J Biol Chem. 2010 Feb 19;285(8):5748-58. doi: 10.1074/jbc.M109.026203. Epub 2009 Dec 23.

Abstract

Oxidative stress in skeletal muscle is a hallmark of various pathophysiologic states that also feature increased reliance on long-chain fatty acid (LCFA) substrate, such as insulin resistance and exercise. However, little is known about the mechanistic basis of the LCFA-induced reactive oxygen species (ROS) burden in intact mitochondria, and elucidation of this mechanistic basis was the goal of this study. Specific aims were to determine the extent to which LCFA catabolism is associated with ROS production and to gain mechanistic insights into the associated ROS production. Because intermediates and by-products of LCFA catabolism may interfere with antioxidant mechanisms, we predicted that ROS formation during LCFA catabolism reflects a complex process involving multiple sites of ROS production as well as modified mitochondrial function. Thus, we utilized several complementary approaches to probe the underlying mechanism(s). Using skeletal muscle mitochondria, our findings indicate that even a low supply of LCFA is associated with ROS formation in excess of that generated by NADH-linked substrates. Moreover, ROS production was evident across the physiologic range of membrane potential and was relatively insensitive to membrane potential changes. Determinations of topology and membrane potential as well as use of inhibitors revealed complex III and the electron transfer flavoprotein (ETF) and ETF-oxidoreductase, as likely sites of ROS production. Finally, ROS production was sensitive to matrix levels of LCFA catabolic intermediates, indicating that mitochondrial export of LCFA catabolic intermediates can play a role in determining ROS levels.

摘要

骨骼肌中的氧化应激是各种病理生理状态的标志,这些状态的特征还包括对长链脂肪酸(LCFA)底物的依赖增加,如胰岛素抵抗和运动。然而,对于完整线粒体中 LCFA 诱导的活性氧(ROS)负担的机制基础知之甚少,阐明这一机制基础是本研究的目标。具体目标是确定 LCFA 分解代谢与 ROS 产生的关联程度,并深入了解相关的 ROS 产生机制。由于 LCFA 分解代谢的中间产物和副产物可能会干扰抗氧化机制,我们预测 LCFA 分解代谢过程中 ROS 的形成反映了一个复杂的过程,涉及多个 ROS 产生部位以及线粒体功能的改变。因此,我们采用了几种互补的方法来探究潜在的机制。利用骨骼肌线粒体,我们的研究结果表明,即使 LCFA 的供应很低,也与 NADH 连接的底物产生的 ROS 形成有关。此外,ROS 的产生在膜电位的生理范围内都很明显,并且对膜电位变化相对不敏感。拓扑和膜电位的测定以及抑制剂的使用表明,复合物 III 和电子传递黄素蛋白(ETF)及其氧化还原酶可能是 ROS 产生的部位。最后,ROS 的产生对基质中 LCFA 分解代谢中间产物的水平敏感,表明线粒体中 LCFA 分解代谢中间产物的输出可以在决定 ROS 水平方面发挥作用。

相似文献

1
3
Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool.
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16212-7. doi: 10.1073/pnas.0604567103. Epub 2006 Oct 18.
4
The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation.
Plant Cell. 2005 Sep;17(9):2587-600. doi: 10.1105/tpc.105.035162. Epub 2005 Jul 29.
7
Coenzyme Q10 serves to couple mitochondrial oxidative phosphorylation and fatty acid β-oxidation, and attenuates NLRP3 inflammasome activation.
Free Radic Res. 2018 Dec;52(11-12):1445-1455. doi: 10.1080/10715762.2018.1500695. Epub 2018 Sep 11.
8
Topology of superoxide production from different sites in the mitochondrial electron transport chain.
J Biol Chem. 2002 Nov 22;277(47):44784-90. doi: 10.1074/jbc.M207217200. Epub 2002 Sep 16.
9
ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency.
Brain. 2007 Aug;130(Pt 8):2045-54. doi: 10.1093/brain/awm135. Epub 2007 Jun 20.
10
Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria.
Free Radic Biol Med. 2013 Aug;61:298-309. doi: 10.1016/j.freeradbiomed.2013.04.006. Epub 2013 Apr 11.

引用本文的文献

1
Perspectives on the interpretation of mitochondrial responses during skeletal muscle disuse-induced atrophy.
J Physiol. 2025 Jul;603(13):3679-3699. doi: 10.1113/JP284160. Epub 2025 May 5.
2
The role of redox signaling in mitochondria and endoplasmic reticulum regulation in kidney diseases.
Arch Toxicol. 2025 May;99(5):1865-1891. doi: 10.1007/s00204-025-04041-z. Epub 2025 Apr 11.
3
Reactive Oxygen Species (ROS) in Metabolic Disease-Don't Shoot the Metabolic Messenger.
Int J Mol Sci. 2025 Mar 14;26(6):2622. doi: 10.3390/ijms26062622.
4
Loss of long-chain acyl-CoA dehydrogenase protects against acute kidney injury.
JCI Insight. 2025 Feb 11;10(6):e186073. doi: 10.1172/jci.insight.186073.
5
Reducing the mitochondrial oxidative burden alleviates lipid-induced muscle insulin resistance in humans.
Sci Adv. 2024 Nov;10(44):eadq4461. doi: 10.1126/sciadv.adq4461. Epub 2024 Oct 30.
6
Mitochondrial fatty acid oxidation drives senescence.
Sci Adv. 2024 Oct 25;10(43):eado5887. doi: 10.1126/sciadv.ado5887.
7
Insulin Resistance, Obesity, and Lipotoxicity.
Adv Exp Med Biol. 2024;1460:391-430. doi: 10.1007/978-3-031-63657-8_14.
8
Mechanism of Obesity-Related Lipotoxicity and Clinical Perspective.
Adv Exp Med Biol. 2024;1460:131-166. doi: 10.1007/978-3-031-63657-8_5.
9
An intrinsic mechanism of metabolic tuning promotes cardiac resilience to stress.
EMBO Mol Med. 2024 Oct;16(10):2450-2484. doi: 10.1038/s44321-024-00132-z. Epub 2024 Sep 13.

本文引用的文献

1
Reactive oxygen species enhance insulin sensitivity.
Cell Metab. 2009 Oct;10(4):260-72. doi: 10.1016/j.cmet.2009.08.009.
2
Insulin resistance is a cellular antioxidant defense mechanism.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17787-92. doi: 10.1073/pnas.0902380106. Epub 2009 Sep 30.
3
Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control.
J Biol Chem. 2009 Aug 21;284(34):22840-52. doi: 10.1074/jbc.M109.032888. Epub 2009 Jun 24.
4
Acyl-CoA-induced generation of reactive oxygen species in mitochondrial preparations is due to the presence of peroxisomes.
Free Radic Biol Med. 2009 Sep 1;47(5):503-9. doi: 10.1016/j.freeradbiomed.2009.05.006. Epub 2009 May 13.
6
Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions.
J Biol Chem. 2009 Jun 12;284(24):16236-16245. doi: 10.1074/jbc.M809512200. Epub 2009 Apr 14.
7
Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation.
Free Radic Biol Med. 2009 May 1;46(9):1283-97. doi: 10.1016/j.freeradbiomed.2009.02.008. Epub 2009 Feb 23.
9
Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants.
Diabetologia. 2009 Apr;52(4):574-82. doi: 10.1007/s00125-009-1264-4. Epub 2009 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验