Suppr超能文献

用于徒手 3D 超声重建的概率框架,应用于左心房导管消融引导。

A probabilistic framework for freehand 3D ultrasound reconstruction applied to catheter ablation guidance in the left atrium.

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.

出版信息

Int J Comput Assist Radiol Surg. 2009 Sep;4(5):425-37. doi: 10.1007/s11548-009-0354-6. Epub 2009 Jun 4.

Abstract

INTRODUCTION

The catheter ablation procedure is a minimally invasive surgery used to treat atrial fibrillation. Difficulty visualizing the catheter inside the left atrium anatomy has led to lengthy procedure times and limited success rates. In this paper, we present a set of algorithms for reconstructing 3D ultrasound data of the left atrium in real-time, with an emphasis on automatic tissue classification for improved clarity surrounding regions of interest.

METHODS

Using an intracardiac echo (ICE) ultrasound catheter, we collect 2D-ICE images of a left atrium phantom from multiple configurations and iteratively compound the acquired data into a 3D-ICE volume. We introduce two new methods for compounding overlapping US data-occupancy-likelihood and response-grid compounding-which automatically classify voxels as "occupied" or "clear," and mitigate reconstruction artifacts caused by signal dropout. Finally, we use the results of an ICE-to-CT registration algorithm to devise a response-likelihood weighting scheme, which assigns weights to US signals based on the likelihood that they correspond to tissue-reflections.

RESULTS

Our algorithms successfully reconstruct a 3D-ICE volume of the left atrium with voxels classified as "occupied" or "clear," even within difficult-to-image regions like the pulmonary vein openings. We are robust to dropout artifact that plagues a subset of the 2D-ICE images, and our weighting scheme assists in filtering out spurious data attributed to ghost-signals from multi-path reflections. By automatically classifying tissue, our algorithm precludes the need for thresholding, a process that is difficult to automate without subjective input. Our hope is to use this result towards developing 3D ultrasound segmentation algorithms in the future.

摘要

简介

导管消融术是一种用于治疗心房颤动的微创手术。由于难以在左心房解剖结构中可视化导管,导致手术时间延长和成功率有限。在本文中,我们提出了一组实时重建左心房 3D 超声数据的算法,重点是自动组织分类,以提高感兴趣区域周围的清晰度。

方法

使用心内超声(ICE)导管,我们从多个配置中采集左心房模型的 2D-ICE 图像,并迭代地将获得的数据复合成 3D-ICE 体积。我们引入了两种新的重叠 US 数据复合方法——占据可能性和响应网格复合,自动将体素分类为“占据”或“清晰”,并减轻由于信号丢失引起的重建伪影。最后,我们使用 ICE-to-CT 注册算法的结果设计了一种响应可能性加权方案,该方案根据 US 信号与组织反射对应可能性为其分配权重。

结果

我们的算法成功重建了左心房的 3D-ICE 体积,其中体素被分类为“占据”或“清晰”,即使在难以成像的区域,如肺静脉开口处也是如此。我们对困扰部分 2D-ICE 图像的丢失伪影具有鲁棒性,我们的加权方案有助于过滤掉归因于多路径反射的幽灵信号的虚假数据。通过自动进行组织分类,我们的算法避免了需要阈值处理的问题,而无需主观输入,这一过程很难实现自动化。我们希望将来能够利用这一结果开发 3D 超声分割算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验