Suppr超能文献

利用多目标计算设计扩展蛋白质的多功能性。

Using multi-objective computational design to extend protein promiscuity.

机构信息

Synth-Bio Group, Universite d'Evry Val d'Essonne-Genopole-CNRS UPS3201. Batiment Geneavenir 6. Genopole Campus 1. 5, rue Henri Desbruères. 91030 Evry Cedex, France.

出版信息

Biophys Chem. 2010 Mar;147(1-2):13-9. doi: 10.1016/j.bpc.2009.12.003. Epub 2010 Jan 19.

Abstract

Many enzymes possess, besides their native function, additional promiscuous activities. Proteins with several activities (multipurpose catalysts) may have a wide range of biotechnological and biomedical applications. Natural promiscuity, however, appears to be of limited scope in this context, because the latent (promiscuous) function is often related to the evolved one (sharing the active site and even the chemical mechanism) and its enhancement upon suitable mutations usually brings about a decrease in the native activity. Here we explore the use of computational protein design to overcome these limitations. The high-plasticity positions close to the original ("native") active-site are the most promising candidates for mutations that create a second active-site associated to a new function. To avoid compromising protein folding and native activity, we propose a minimal-perturbation approach based on the combinatorial optimization of, both the de novo catalytic activity and the folding free-energy: essentially, we construct the Pareto Set of optimal stability/promiscuous-function solutions. We validate our approach by introducing a promiscuous esterase activity in E. coli thioredoxin on the basis of mutations at positions close to the native-active-site disulfide-bridge. Native oxidoreductase activity is not compromised and it is, in fact, found to be 1.5-fold enhanced, as determined by an insulin-reduction assay. This work provides general guidelines as to how computational design can be used to expand the scope and applications of protein promiscuity. From a more general viewpoint, it illustrates the potential of multi-objective optimization as the computational analogue of multi-feature natural selection.

摘要

许多酶除了具有天然功能外,还具有额外的混杂活性。具有多种活性的蛋白质(多用途催化剂)可能具有广泛的生物技术和生物医学应用。然而,在这种情况下,天然混杂似乎范围有限,因为潜在的(混杂)功能通常与进化的功能(共享活性位点甚至化学机制)相关,并且通过适当的突变增强通常会导致天然活性降低。在这里,我们探索使用计算蛋白质设计来克服这些限制。靠近原始(“天然”)活性位点的高塑性位置是突变的最有前途的候选者,这些突变会创建与新功能相关的第二个活性位点。为了避免影响蛋白质折叠和天然活性,我们提出了一种基于从头催化活性和折叠自由能的组合优化的最小扰动方法:本质上,我们构建了最优稳定性/混杂功能解决方案的帕累托集。我们通过在靠近天然活性位点二硫键的位置进行突变,在大肠杆菌硫氧还蛋白中引入混杂的酯酶活性来验证我们的方法。天然氧化还原酶活性没有受到影响,实际上,通过胰岛素还原测定发现其活性增强了 1.5 倍。这项工作提供了关于计算设计如何用于扩展蛋白质混杂范围和应用的一般指导原则。从更一般的角度来看,它说明了多目标优化作为多特征自然选择的计算模拟的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验