Dipartimento di Oncologia, Biologia e Genetica, Università di Genova, Italy.
Differentiation. 2010 Mar;79(3):194-202. doi: 10.1016/j.diff.2009.11.004. Epub 2010 Jan 14.
Hox genes control morphogenesis along the antero-posterior axis. The skeleton of vertebrates offers an exemplar readout of their activity: Hox genes control the morphology of the skeleton by defining type of vertebrae, and structure of the limbs. The head skeleton of vertebrates is formed by cranial neural crest (CNC), and mainly by a Hox-free domain of the CNC. Ectopic expression of anterior Hox genes in the CNC prevents the formation of the facial skeleton. These inhibitory effects on skeletogenesis are at odds with the recognized function of Hox genes in patterning the developing skeleton. To clarify these controversial effects, we overexpressed Hoxa2 across the entire developing endochondral skeleton in mouse. This gave rise to strong and spatially restricted effects: the most noticeable abnormalities were detected in the cranial base and consisted in a failure of bones to form or in a transformed morphology of bones. The rest of the skeleton exhibited milder defects, which never consisted in the absence or the transformation of any skeletal components. Analyses at early stages of endochondral bone development showed disorganized cell condensations in the cranial base of Col2a1-Hoxa2 transgenic embryos. We show that the distribution of Hoxa2-positive cells in Col2a1-Hoxa2 embryos does not match the wild-type developing cartilages. The Hoxa2-positive cells detected in atypical, non-chondrogenic location in the cranial base, remain as chondrocytes and lay down cartilage, indicating that Hoxa2 does not alter the fate of chondrocytes, but interferes with their spatial distribution. We propose that the ability of Hoxa2 to change the spatial distribution of cells accounts for the different phenotypes observed in Col2a1-Hoxa2 embryos; it also provides an explanation for the apparent inconsistency between the inhibitory effects of Hoxa2 on skeletal development, and the ability of Hox genes to establish the morphology of the vertebrate skeleton.
Hox 基因控制着沿前后轴的形态发生。脊椎动物的骨骼为其活性提供了一个典范的读出:Hox 基因通过定义椎骨的类型和四肢的结构来控制骨骼的形态。脊椎动物的头骨骼是由颅神经嵴(CNC)形成的,主要由 CNC 的一个无 Hox 区域形成。在 CNC 中外源表达前 Hox 基因会阻止面部骨骼的形成。这些对骨骼发生的抑制作用与 Hox 基因在模式化发育骨骼方面的公认功能不一致。为了澄清这些有争议的作用,我们在小鼠整个发育的软骨内骨骼中过表达了 Hoxa2。这产生了强烈且空间受限的作用:最明显的异常是在颅底检测到的,包括骨骼形成失败或骨骼形态的改变。其余骨骼表现出较轻的缺陷,这些缺陷从未表现为任何骨骼成分的缺失或改变。对软骨内骨发育早期的分析表明,Col2a1-Hoxa2 转基因胚胎颅底的细胞凝聚出现了紊乱。我们表明,Col2a1-Hoxa2 胚胎中 Hoxa2 阳性细胞的分布与野生型发育中的软骨不匹配。在颅底非典型、非软骨形成部位检测到的 Hoxa2 阳性细胞仍然是软骨细胞,并形成软骨,表明 Hoxa2 没有改变软骨细胞的命运,而是干扰了它们的空间分布。我们提出,Hoxa2 改变细胞空间分布的能力解释了在 Col2a1-Hoxa2 胚胎中观察到的不同表型;它还为 Hoxa2 对骨骼发育的抑制作用与 Hox 基因建立脊椎动物骨骼形态的能力之间明显的不一致提供了解释。