Medical Image Analysis Laboratory, School of Computing, Queen's University, Kingston, ON, Canada.
Neuroimage. 2010 Apr 1;50(2):532-44. doi: 10.1016/j.neuroimage.2009.12.074. Epub 2009 Dec 28.
Probabilistic maps are useful in functional neuroimaging research for anatomical labeling and for data analysis. The degree to which a probability map can accurately estimate the location of a structure of interest in a new individual depends on many factors, including variability in the morphology of the structure of interest over subjects, the registration (normalization procedure and template) applied to align the brains among individuals for constructing a probability map, and the registration used to map a new subject's data set to the frame of the probabilistic map. Here, we take Heschl's gyrus (HG) as our structure of interest, and explore the impact of different registration methods on the accuracy with which a probabilistic map of HG can approximate HG in a new individual. We assess and compare the goodness of fit of probability maps generated using five different registration techniques, as well as evaluating the goodness of fit of a previously published probabilistic map of HG generated using affine registration (Penhune et al., 1996). The five registration techniques are: three groupwise registration techniques (implicit reference-based or IRG, DARTEL, and BSpline-based); a high-dimensional pairwise registration (HAMMER) as well as a segmentation-based registration (unified segmentation of SPM5). The accuracy of the resulting maps in labeling HG was assessed using evidence-based diagnostic measures within a leave-one-out cross-validation framework. Our results demonstrated the out performance of IRG and DARTEL compared to other registration techniques in terms of sensitivity, specificity and positive predictive value (PPV). All the techniques displayed relatively low sensitivity rates, despite high PPV, indicating that the generated probability maps provide accurate but conservative estimates of the location and extent of HG in new individuals.
概率图在功能神经影像学研究中非常有用,可用于解剖学标记和数据分析。概率图在新个体中准确估计感兴趣结构位置的程度取决于许多因素,包括感兴趣结构在个体间的形态学变异性、用于对齐个体间大脑以构建概率图的配准(归一化过程和模板),以及用于将新个体数据集映射到概率图框架的配准。在这里,我们以 Heschl gyrus (HG) 为感兴趣的结构,探索不同配准方法对 HG 概率图在新个体中准确逼近 HG 的影响。我们评估和比较了使用五种不同配准技术生成的概率图的拟合优度,并评估了使用仿射配准(Penhune 等人,1996 年)生成的 HG 概率图的拟合优度。这五种配准技术是:三种基于群组的配准技术(隐式参考或 IRG、DARTEL 和基于 B 样条);高维成对配准(HAMMER)以及基于分割的配准(SPM5 的统一分割)。在留一交叉验证框架内使用基于证据的诊断措施评估生成地图在标记 HG 中的准确性。我们的结果表明,IRG 和 DARTEL 在敏感性、特异性和阳性预测值 (PPV) 方面优于其他配准技术。尽管 PPV 较高,但所有技术的敏感性率都相对较低,这表明生成的概率图提供了对新个体中 HG 的位置和范围的准确但保守的估计。