Suppr超能文献

Zn2+ 通过细胞内结构域激活大电导钙激活钾通道。

Zn2+ activates large conductance Ca2+-activated K+ channel via an intracellular domain.

机构信息

Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Biol Chem. 2010 Feb 26;285(9):6434-42. doi: 10.1074/jbc.M109.069211. Epub 2009 Dec 26.

Abstract

Zinc is an essential trace element and plays crucial roles in normal development, often as an integral structural component of transcription factors and enzymes. Recent evidence suggests that intracellular Zn(2+) functions as a signaling molecule, mediating a variety of important physiological phenomena. However, the immediate effectors of intracellular Zn(2+) signaling are not well known. We show here that intracellular Zn(2+) potently and reversibly activates large-conductance voltage- and Ca(2+)-activated Slo1 K(+) (BK) channels. The full effect of Zn(2+) requires His(365) in the RCK1 (regulator of conductance for K(+)) domain of the channel. Furthermore, mutation of two nearby acidic residues, Asp(367) and Glu(399), also reduced activation of the channel by Zn(2+), suggesting a possible structural arrangement for Zn(2+) binding by the aforementioned residues. Extracellular Zn(2+) activated Slo1 BK channels when coexpressed with Zn(2+)-permeable TRPM7 (transient receptor potential melastatin 7) channels. The results thus demonstrate that Slo1 BK channels represent a positive and direct effector of Zn(2+) signaling and may participate in sculpting cellular response to an increase in intracellular Zn(2+) concentration.

摘要

锌是一种必需的微量元素,在正常发育中发挥着关键作用,通常作为转录因子和酶的结构组成部分。最近的证据表明,细胞内 Zn(2+) 作为一种信号分子发挥作用,介导多种重要的生理现象。然而,细胞内 Zn(2+) 信号的直接效应物尚不清楚。我们在这里表明,细胞内 Zn(2+) 强烈且可逆地激活大电导电压和 Ca(2+) 激活的 Slo1 K(+) (BK) 通道。Zn(2+) 的全部作用需要通道 RCK1 (K(+) 电导调节剂)结构域中的 His(365)。此外,两个附近酸性残基 Asp(367)和 Glu(399)的突变也降低了 Zn(2+)对通道的激活作用,这表明上述残基可能存在 Zn(2+) 结合的结构排列。当与 Zn(2+) 可渗透的 TRPM7 (瞬时受体电位 melastatin 7) 通道共表达时,细胞外 Zn(2+) 激活了 Slo1 BK 通道。结果表明,Slo1 BK 通道是 Zn(2+) 信号的一个正向和直接效应物,可能参与塑造细胞对细胞内 Zn(2+) 浓度增加的反应。

相似文献

1
Zn2+ activates large conductance Ca2+-activated K+ channel via an intracellular domain.
J Biol Chem. 2010 Feb 26;285(9):6434-42. doi: 10.1074/jbc.M109.069211. Epub 2009 Dec 26.
3
The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):4039-43. doi: 10.1073/pnas.0800304105. Epub 2008 Mar 3.
4
Reciprocal regulation of the Ca2+ and H+ sensitivity in the SLO1 BK channel conferred by the RCK1 domain.
Nat Struct Mol Biol. 2008 Apr;15(4):403-10. doi: 10.1038/nsmb.1398. Epub 2008 Mar 16.
7
Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring.
Proc Natl Acad Sci U S A. 2016 Dec 6;113(49):14055-14060. doi: 10.1073/pnas.1611415113. Epub 2016 Nov 21.
9
Functional effects of auxiliary beta4-subunit on rat large-conductance Ca(2+)-activated K(+) channel.
Biophys J. 2004 May;86(5):2871-82. doi: 10.1016/S0006-3495(04)74339-8.
10
Multiple regulatory sites in large-conductance calcium-activated potassium channels.
Nature. 2002 Aug 22;418(6900):880-4. doi: 10.1038/nature00956.

引用本文的文献

2
Region-Specific and Pregnancy-Enhanced Vasodilator Effects of Hydrogen Sulfide.
Obstet Gynecol Res. 2023;6(4):309-316. doi: 10.26502/ogr0145. Epub 2023 Dec 22.
3
What Are the Functions of Zinc in the Nervous System?
Neurology. 2023 Oct 17;101(16):714-720. doi: 10.1212/WNL.0000000000207912.
5
The Function and Regulation of Zinc in the Brain.
Neuroscience. 2021 Mar 1;457:235-258. doi: 10.1016/j.neuroscience.2021.01.010. Epub 2021 Jan 16.
7
Fe-Mediated Activation of BK Channels by Rapid Photolysis of CORM-S1 Releasing CO and Fe.
ACS Chem Biol. 2020 Aug 21;15(8):2098-2106. doi: 10.1021/acschembio.0c00282. Epub 2020 Jul 29.
8
CO-independent modification of K channels by tricarbonyldichlororuthenium(II) dimer (CORM-2).
Eur J Pharmacol. 2017 Nov 15;815:33-41. doi: 10.1016/j.ejphar.2017.10.006. Epub 2017 Oct 5.
9
The direct modulatory activity of zinc toward ion channels.
Integr Med Res. 2015 Sep;4(3):142-146. doi: 10.1016/j.imr.2015.07.004. Epub 2015 Jul 15.
10
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection.
Biochem J. 2017 Jun 9;474(12):2067-2094. doi: 10.1042/BCJ20160623.

本文引用的文献

1
Zinc in the physiology and pathology of the CNS.
Nat Rev Neurosci. 2009 Nov;10(11):780-91. doi: 10.1038/nrn2734. Epub 2009 Oct 14.
2
Comparative effects of H+ and Ca2+ on large-conductance Ca2+- and voltage-gated Slo1 K+ channels.
Channels (Austin). 2009 Jul-Aug;3(4):249-58. doi: 10.4161/chan.3.4.9253. Epub 2009 Jul 17.
3
Molecular mechanism underlying Akt activation in zinc-induced cardioprotection.
Am J Physiol Heart Circ Physiol. 2009 Aug;297(2):H569-75. doi: 10.1152/ajpheart.00293.2009. Epub 2009 Jun 12.
4
Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+.
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8374-9. doi: 10.1073/pnas.0812675106. Epub 2009 May 5.
5
Zinc activates damage-sensing TRPA1 ion channels.
Nat Chem Biol. 2009 Mar;5(3):183-90. doi: 10.1038/nchembio.146. Epub 2009 Feb 8.
6
Measuring the influence of the BKCa {beta}1 subunit on Ca2+ binding to the BKCa channel.
J Gen Physiol. 2009 Feb;133(2):139-50. doi: 10.1085/jgp.200810129. Epub 2009 Jan 12.
7
Molecular mechanisms of BK channel activation.
Cell Mol Life Sci. 2009 Mar;66(5):852-75. doi: 10.1007/s00018-008-8609-x.
8
Control of K(Ca) channels by calcium nano/microdomains.
Neuron. 2008 Sep 25;59(6):873-81. doi: 10.1016/j.neuron.2008.09.001.
10
An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels.
J Gen Physiol. 2008 May;131(5):483-502. doi: 10.1085/jgp.200809980.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验