Suppr超能文献

Smad3 蛋白水平受 Ras 活性和细胞周期调控,从而决定转化生长因子-β的反应。

Smad3 protein levels are modulated by Ras activity and during the cell cycle to dictate transforming growth factor-beta responses.

机构信息

Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London WC2A 3PX, United Kingdom.

出版信息

J Biol Chem. 2010 Feb 26;285(9):6489-97. doi: 10.1074/jbc.M109.043877. Epub 2009 Dec 26.

Abstract

Transforming growth factor beta (TGF-beta) regulates many biological processes, and aberrant TGF-beta signaling is implicated in tumor development. Smad3 is a central component of the TGF-beta signaling pathway, and once activated, Smad3 forms complexes with Smad4 or other receptor-regulated Smads, which accumulate in the nucleus to transcriptionally regulate TGF-beta target genes. Because Smad3 plays a significant role in mediating the activities of TGF-beta, we examined its regulation during tumor development using a well characterized tumor model. We demonstrate that Smad3 levels are dramatically reduced in the tumorigenic cell line transformed with activated H-Ras compared with the normal parental epithelial cells. Interestingly, we also observe a cell cycle-dependent regulation of Smad3 in both cell types, with high Smad3 levels in quiescent cells and a significant drop in Smad3 protein levels in proliferating cells. Smad3 is regulated at the mRNA level and at the level of protein stability. In addition, functional analysis indicates that down-regulation of Smad3 levels is required for the tumor cells to proliferate in the presence of TGF-beta, because ectopic expression of Smad3 in the tumorigenic cell line restores the growth inhibitory response to TGF-beta. In contrast, expression of high levels of Smad3 did not interfere with the ability of these cells to undergo epithelial to mesenchymal transition upon TGF-beta stimulation. Altogether, our results suggest that the level of Smad3 protein is an important determinant of the progression of tumorigenesis. High levels of Smad3 are required for the tumor suppressor activities of TGF-beta, whereas lower levels are sufficient for the tumor promoting functions.

摘要

转化生长因子-β(TGF-β)调节许多生物过程,异常的 TGF-β信号与肿瘤的发展有关。Smad3 是 TGF-β信号通路的核心组成部分,一旦被激活,Smad3 就会与 Smad4 或其他受体调节的 Smads 形成复合物,这些复合物在核内积累,从而转录调节 TGF-β的靶基因。由于 Smad3 在介导 TGF-β的活性方面起着重要作用,我们使用一个特征明确的肿瘤模型来研究其在肿瘤发展过程中的调节作用。我们发现,与正常的亲本上皮细胞相比,转化为激活的 H-Ras 的肿瘤细胞系中的 Smad3 水平显著降低。有趣的是,我们还观察到两种细胞类型中 Smad3 的细胞周期依赖性调节,静止细胞中的 Smad3 水平较高,增殖细胞中的 Smad3 蛋白水平显著下降。Smad3 在 mRNA 水平和蛋白稳定性水平上受到调节。此外,功能分析表明,下调 Smad3 水平是肿瘤细胞在 TGF-β存在下增殖所必需的,因为在肿瘤细胞系中异位表达 Smad3 可恢复 TGF-β对细胞生长的抑制反应。相比之下,高表达 Smad3 并不干扰这些细胞在 TGF-β刺激下发生上皮-间充质转化的能力。总之,我们的结果表明 Smad3 蛋白水平是肿瘤发生进展的一个重要决定因素。高水平的 Smad3 是 TGF-β肿瘤抑制活性所必需的,而较低水平的 Smad3 则足以发挥肿瘤促进功能。

相似文献

1
Smad3 protein levels are modulated by Ras activity and during the cell cycle to dictate transforming growth factor-beta responses.
J Biol Chem. 2010 Feb 26;285(9):6489-97. doi: 10.1074/jbc.M109.043877. Epub 2009 Dec 26.
3
Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail.
Gastroenterology. 2017 Nov;153(5):1378-1391.e6. doi: 10.1053/j.gastro.2017.07.014. Epub 2017 Jul 20.
4
7
Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4.
Oncogene. 2003 Oct 2;22(43):6748-63. doi: 10.1038/sj.onc.1206791.
8
TGF-β-activated SMAD3/4 complex transcriptionally upregulates N-cadherin expression in non-small cell lung cancer.
Lung Cancer. 2015 Mar;87(3):249-57. doi: 10.1016/j.lungcan.2014.12.015. Epub 2015 Jan 5.

引用本文的文献

2
Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development.
Cancer Metastasis Rev. 2023 Dec;42(4):1219-1256. doi: 10.1007/s10555-023-10122-1. Epub 2023 Jul 17.
3
Oncogenic RAS sensitizes cells to drug-induced replication stress via transcriptional silencing of P53.
Oncogene. 2022 May;41(19):2719-2733. doi: 10.1038/s41388-022-02291-0. Epub 2022 Apr 7.
4
microRNA-17 functions as an oncogene by downregulating Smad3 expression in hepatocellular carcinoma.
Cell Death Dis. 2019 Sep 26;10(10):723. doi: 10.1038/s41419-019-1960-z.
5
CDKL5 deficiency predisposes neurons to cell death through the deregulation of SMAD3 signaling.
Brain Pathol. 2019 Sep;29(5):658-674. doi: 10.1111/bpa.12716. Epub 2019 Mar 22.
6
Targeting EZH2 in Multiple Myeloma-Multifaceted Anti-Tumor Activity.
Epigenomes. 2018 Sep;2(3). doi: 10.3390/epigenomes2030016. Epub 2018 Sep 3.
7
Transforming growth factor-β in stem cells and tissue homeostasis.
Bone Res. 2018 Jan 31;6:2. doi: 10.1038/s41413-017-0005-4. eCollection 2018.

本文引用的文献

1
Transforming Growth Factor {beta} Can Stimulate Smad1 Phosphorylation Independently of Bone Morphogenic Protein Receptors.
J Biol Chem. 2009 Apr 10;284(15):9755-63. doi: 10.1074/jbc.M809223200. Epub 2009 Feb 18.
2
TGFbeta-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch.
EMBO J. 2009 Jan 21;28(2):88-98. doi: 10.1038/emboj.2008.266. Epub 2008 Dec 18.
3
Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers.
Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16224-9. doi: 10.1073/pnas.0808041105. Epub 2008 Oct 13.
5
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses.
Science. 2008 Sep 26;321(5897):1801-6. doi: 10.1126/science.1164368. Epub 2008 Sep 4.
6
TGFbeta in Cancer.
Cell. 2008 Jul 25;134(2):215-30. doi: 10.1016/j.cell.2008.07.001.
7
Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling.
Genes Dev. 2008 Jan 1;22(1):106-20. doi: 10.1101/gad.1590908.
8
How the Smads regulate transcription.
Int J Biochem Cell Biol. 2008;40(3):383-408. doi: 10.1016/j.biocel.2007.09.006. Epub 2007 Oct 7.
10
Balancing BMP signaling through integrated inputs into the Smad1 linker.
Mol Cell. 2007 Feb 9;25(3):441-54. doi: 10.1016/j.molcel.2007.01.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验