College of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China.
Chemphyschem. 2010 Feb 22;11(3):622-9. doi: 10.1002/cphc.200900687.
Protonated base pairs were recently implicated in the context of DNA proton transfer and charge migration. The effects of protonating different sites of the guanine-cytosine (GC) base pair are studied here by using the DZP++ B3LYP density functional method. Optimized structures for the protonated GC base pair are compared with those of parent GC and the neutral hydrogenated GC radical (GCH). Proton and hydrogen-atom additions significantly disturb the structure of the GC base pair. However, the structural perturbations arising from protonation are often less than those arising from hydrogenation of GC. Protonation of the GC base pair causes significant strengthening of the interstrand hydrogen bonds and a concomitant increase in the base dissociation energies. The adiabatic ionization potentials (AIPs), vertical ionization potentials (VIPs), and proton affinities (PAs) for the different protonation sites of the GC base pair are predicted. The N7 site of guanine is the preferred site for protonation of the GC base pair.
最近在 DNA 质子转移和电荷迁移的背景下涉及质子化碱基对。本文使用 DZP++ B3LYP 密度泛函方法研究了质子化鸟嘌呤-胞嘧啶 (GC) 碱基对不同位点的影响。与母体 GC 和中性氢化 GC 自由基 (GCH) 相比,优化了质子化 GC 碱基对的结构。质子和氢原子的添加会严重干扰 GC 碱基对的结构。然而,与 GC 的氢化相比,质子化引起的结构扰动通常较小。质子化 GC 碱基对会导致氢键的强度显著增强,同时碱基离解能也会增加。预测了 GC 碱基对不同质子化位点的绝热电离能 (AIP)、垂直电离能 (VIP) 和质子亲和力 (PA)。鸟嘌呤的 N7 位是 GC 碱基对质子化的首选位置。