Suppr超能文献

骨骼肌中的自噬:对庞贝病的影响。

Autophagy in skeletal muscle: implications for Pompe disease.

作者信息

Shea L, Raben N

机构信息

The Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.

出版信息

Int J Clin Pharmacol Ther. 2009;47 Suppl 1(Suppl 1):S42-7. doi: 10.5414/cpp47042.

Abstract

Pompe disease is caused by an inherited deficiency of acid a-glucosidase (GAA), a lysosomal enzyme that catalyzes the breakdown of glycogen to glucose. In the absence of GAA, enlarged, glycogen-laden lysosomes accumulate in multiple tissues, although the major clinical manifestations are seen in cardiac and skeletal muscle. For many years, it was believed that the rupture of glycogen-filled lysosomes was the major cause of the profound muscle damage observed in patients with Pompe disease. Here, we present evidence that a failure of productive autophagy in muscle tissue contributes strongly to disease pathology in both patients with Pompe disease and GAA-knockout mice. In the GAA-knockout mouse model, progressive accumulation of autophagic vesicles is restricted to Type II-rich muscle fibers. Not only does this build-up of autophagosomes disrupt the contractile apparatus in the muscle fibers, it also interferes with enzyme replacement therapy by acting as a sink for the recombinant enzyme and preventing its efficient delivery to the lysosomes. Our data indicate that a re-examination of the presumed pathological mechanism in Pompe disease is necessary, and suggest that successful treatment of patients with Pompe disease will require consideration of the dramatic failure of autophagy that occurs in this disease.

摘要

庞贝病是由酸性α-葡萄糖苷酶(GAA)遗传性缺乏引起的,GAA是一种溶酶体酶,可催化糖原分解为葡萄糖。在缺乏GAA的情况下,尽管主要临床表现见于心脏和骨骼肌,但多个组织中会积累肿大的、充满糖原的溶酶体。多年来,人们一直认为充满糖原的溶酶体破裂是庞贝病患者出现严重肌肉损伤的主要原因。在此,我们提供证据表明,肌肉组织中自噬功能障碍在庞贝病患者和GAA基因敲除小鼠的疾病病理过程中起重要作用。在GAA基因敲除小鼠模型中,自噬泡的逐渐积累仅限于富含II型肌纤维的肌肉。这种自噬体的积累不仅破坏了肌纤维中的收缩装置,还通过充当重组酶的“汇”并阻止其有效递送至溶酶体而干扰酶替代疗法。我们的数据表明,有必要重新审视庞贝病假定的病理机制,并提示成功治疗庞贝病患者需要考虑该疾病中发生的自噬严重功能障碍。

相似文献

1
Autophagy in skeletal muscle: implications for Pompe disease.
Int J Clin Pharmacol Ther. 2009;47 Suppl 1(Suppl 1):S42-7. doi: 10.5414/cpp47042.
2
When more is less: excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease.
Autophagy. 2009 Jan;5(1):111-3. doi: 10.4161/auto.5.1.7293. Epub 2009 Jan 30.
3
Autophagy and lysosomes in Pompe disease.
Autophagy. 2006 Oct-Dec;2(4):318-20. doi: 10.4161/auto.2984. Epub 2006 Oct 5.
4
Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches.
Mol Genet Metab. 2009 Apr;96(4):208-17. doi: 10.1016/j.ymgme.2008.12.012. Epub 2009 Jan 22.
5
Gene Therapy for Pompe Disease: The Time is now.
Hum Gene Ther. 2019 Oct;30(10):1245-1262. doi: 10.1089/hum.2019.109. Epub 2019 Sep 9.
6
Reduction of Autophagic Accumulation in Pompe Disease Mouse Model Following Gene Therapy.
Curr Gene Ther. 2019;19(3):197-207. doi: 10.2174/1566523219666190621113807.
8
Autophagy and mitochondria in Pompe disease: nothing is so new as what has long been forgotten.
Am J Med Genet C Semin Med Genet. 2012 Feb 15;160C(1):13-21. doi: 10.1002/ajmg.c.31317. Epub 2012 Jan 17.
9
Pompe Disease: New Developments in an Old Lysosomal Storage Disorder.
Biomolecules. 2020 Sep 18;10(9):1339. doi: 10.3390/biom10091339.

引用本文的文献

3
Diaphragm pacing and independent breathing in individuals with severe Pompe disease.
Front Rehabil Sci. 2023 Jul 31;4:1184031. doi: 10.3389/fresc.2023.1184031. eCollection 2023.
5
What's new and what's next for gene therapy in Pompe disease?
Expert Opin Biol Ther. 2022 Sep;22(9):1117-1135. doi: 10.1080/14712598.2022.2067476. Epub 2022 Apr 27.
6
Therapeutic Approaches in Lysosomal Storage Diseases.
Biomolecules. 2021 Nov 26;11(12):1775. doi: 10.3390/biom11121775.
7
Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease.
EMBO Mol Med. 2021 Nov 8;13(11):e14434. doi: 10.15252/emmm.202114434. Epub 2021 Oct 4.
8
Carnitine is a pharmacological allosteric chaperone of the human lysosomal -glucosidase.
J Enzyme Inhib Med Chem. 2021 Dec;36(1):2068-2079. doi: 10.1080/14756366.2021.1975694.
10
Glycogen accumulation in smooth muscle of a Pompe disease mouse model.
J Smooth Muscle Res. 2021;57(0):8-18. doi: 10.1540/jsmr.57.8.

本文引用的文献

1
Deconstructing Pompe disease by analyzing single muscle fibers: to see a world in a grain of sand..
Autophagy. 2007 Nov-Dec;3(6):546-52. doi: 10.4161/auto.4591. Epub 2007 Jun 15.
2
Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease.
Neurology. 2007 Jan 9;68(2):99-109. doi: 10.1212/01.wnl.0000251268.41188.04. Epub 2006 Dec 6.
3
Characterization of pre- and post-treatment pathology after enzyme replacement therapy for Pompe disease.
Lab Invest. 2006 Dec;86(12):1208-20. doi: 10.1038/labinvest.3700484. Epub 2006 Oct 30.
4
Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease.
Mol Ther. 2006 Dec;14(6):831-9. doi: 10.1016/j.ymthe.2006.08.009. Epub 2006 Sep 27.
5
Autophagy and lysosomes in Pompe disease.
Autophagy. 2006 Oct-Dec;2(4):318-20. doi: 10.4161/auto.2984. Epub 2006 Oct 5.
7
Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease.
Ann Neurol. 2006 Apr;59(4):700-8. doi: 10.1002/ana.20807.
8
The pleiotropic role of autophagy: from protein metabolism to bactericide.
Cell Death Differ. 2005 Nov;12 Suppl 2:1535-41. doi: 10.1038/sj.cdd.4401728.
10
Lysosomal acid alpha-glucosidase consists of four different peptides processed from a single chain precursor.
J Biol Chem. 2005 Feb 25;280(8):6780-91. doi: 10.1074/jbc.M404008200. Epub 2004 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验