Departmentsof Ophthalmology & Visual Sciences, University of Kentucky, Lexington, Kentucky 40536, USA.
J Biol Chem. 2010 Mar 5;285(10):7657-69. doi: 10.1074/jbc.M109.093765. Epub 2010 Jan 4.
Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. Using molecular modeling studies that build on the x-ray crystal structure of tetrameric vimentin rod 2B domain we reveal that the WFA binding site is conserved in the corresponding domain of tetrameric GFAP. Consequently, we demonstrate that WFA covalently binds soluble recombinant tetrameric human GFAP at cysteine 294. In cultured primary astrocytes, WFA binds to and down-regulates soluble vimentin and GFAP expression to cause cell cycle G(0)/G(1) arrest. Exploiting a chemical injury model that overexpresses vimentin and GFAP in retinal Müller glia, we demonstrate that systemic delivery of WFA down-regulates soluble vimentin and GFAP expression in mouse retinas. This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies.
神经胶质增生是一种发生在中枢神经系统损伤修复过程中的生物学过程,其特征是中间丝(IFs)胶质纤维酸性蛋白(GFAP)和波形蛋白的过度表达。许多视网膜疾病的一个共同特征是反应性 Müller 细胞神经胶质增生,这是一种无法治疗的疾病,会导致组织瘢痕形成,甚至失明。在这里,我们证明了针对波形蛋白的小分子 withaferin A(WFA)是 GFAP 的新型化学探针。使用基于四聚体波形蛋白 2B 结构域的 X 射线晶体结构的分子建模研究,我们揭示了 WFA 结合位点在四聚体 GFAP 的相应结构域中是保守的。因此,我们证明 WFA 可以与可溶性重组四聚体人 GFAP 在半胱氨酸 294 处发生共价结合。在培养的原代星形胶质细胞中,WFA 结合并下调可溶性波形蛋白和 GFAP 的表达,导致细胞周期 G0/G1 期停滞。利用在视网膜 Müller 胶质细胞中过度表达波形蛋白和 GFAP 的化学损伤模型,我们证明全身性给予 WFA 可下调小鼠视网膜中可溶性波形蛋白和 GFAP 的表达。这种可溶性 IF 的药理学敲低导致 GFAP 纤维组装受损,并抑制 Müller 胶质细胞的增殖反应。我们进一步表明,在波形蛋白缺陷小鼠中,GFAP 纤维组装缺陷更为严重,WFA 部分挽救了这种缺陷。这些发现说明了 WFA 作为 III 型 IF 的化学探针,并阐明了这类 withanolide 作为治疗多种神经胶质增生依赖性中枢神经系统创伤性损伤和疾病以及孤儿 IF 依赖性病理的潜在治疗方法。