Suppr超能文献

土壤退化的遥感:引言。

Remote sensing of soil degradation: introduction.

机构信息

Dep. of Environmental Earth System Science and Program on Food Security and the Environment, Stanford Univ., 473 Via Ortega, Stanford, CA 94305, USA.

出版信息

J Environ Qual. 2009 Dec 30;39(1):1-4. doi: 10.2134/jeq2009.0326. Print 2010 Jan-Feb.

Abstract

In the 21st century, mapping and monitoring the occurrence of soil degradation will be an important component of successful land management. Remote sensing, with its unique ability to measure across space and time, will be an increasingly indispensible tool for assessing degradation. However, much of the recent experience and progress in using remote sensing and other geospatial technologies to map soil degradation is reported outside of the peer-reviewed literature. This motivated the organization of a special collection of papers focused on remote sensing of soil degradation, to highlight recent successes, common challenges, and promising new approaches. This introductory paper provides an overview of the papers, gaps in knowledge, and future research directions. Across several regions and types of degradation, many assessments to date have relied heavily on data from the Landsat satellite sensor. Many approaches have also relied at some point on subjective visual interpretation, either of the satellite imagery itself or to provide field data used to train models that use satellite data. While subjectivity is not necessarily bad, it precludes repeatability and makes it even more important to rigorously test model estimates with independent data. Overall, it remains quite challenging to find robust relationships between remote sensing measures and soil degradation, particularly for slight to moderate levels of degradation. There have nonetheless been some clear successes, and there remains great potential for progress. Promising directions outlined in the papers include using multi-year measures of vegetation condition, combining different sensor systems including optical and radar data, and using advanced statistical techniques such as Bayesian networks and decision trees.

摘要

在 21 世纪,绘制和监测土壤退化的发生情况将是成功土地管理的重要组成部分。遥感以其在空间和时间上进行测量的独特能力,将成为评估退化的一个日益不可或缺的工具。然而,最近在利用遥感和其他地理空间技术来绘制土壤退化图方面的许多经验和进展都是在同行评议文献之外报告的。这促使组织了一个专门的论文集,重点关注土壤退化的遥感,以突出最近的成功、共同的挑战和有前途的新方法。本文介绍性地概述了这些论文、知识空白和未来的研究方向。在几个地区和类型的退化中,迄今为止的许多评估都严重依赖于来自 Landsat 卫星传感器的数据。许多方法也在某种程度上依赖于主观的视觉解释,无论是对卫星图像本身的解释,还是提供用于训练使用卫星数据的模型的现场数据。虽然主观性不一定是坏事,但它排除了可重复性,因此更有必要用独立的数据严格测试模型的估计值。总的来说,在遥感测量值和土壤退化之间找到稳健的关系仍然非常具有挑战性,特别是对于轻微到中度的退化水平。尽管如此,还是有一些明显的成功案例,而且仍然有很大的进展潜力。这些论文中概述的有希望的方向包括使用多年的植被状况测量、结合不同的传感器系统,包括光学和雷达数据,以及使用先进的统计技术,如贝叶斯网络和决策树。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验