Suppr超能文献

用 Co(2+)取代人精氨酸酶 i 中的 Mn(2+)可增强其对 l-精氨酸营养缺陷型癌细胞系的细胞毒性。

Replacing Mn(2+) with Co(2+) in human arginase i enhances cytotoxicity toward l-arginine auxotrophic cancer cell lines.

机构信息

Department of Chemical Engineering, University of Texas, Austin, 78712, USA.

出版信息

ACS Chem Biol. 2010 Mar 19;5(3):333-42. doi: 10.1021/cb900267j.

Abstract

Replacing the two Mn(2+) ions normally present in human Arginase I with Co(2+) resulted in a significantly lowered K(M) value without a concomitant reduction in k(cat). In addition, the pH dependence of the reaction was shifted from a pK(a) of 8.5 to a pK(a) of 7.5. The combination of these effects led to a 10-fold increase in overall catalytic activity (k(cat)/K(M)) at pH 7.4, close to the pH of human serum. Just as important for therapeutic applications, Co(2+) substitution lead to significantly increased serum stability of the enzyme. Our data can be explained by direct coordination of l-Arg to one of the Co(2+) ions during reaction, consistent with previously reported model studies. In vitro cytotoxicity experiments verified that the Co(2+)-substituted human Arg I displays an approximately 12- to 15-fold lower IC(50) value for the killing of human hepatocellular carcinoma and melanoma cell lines and thus constitutes a promising new candidate for the treatment of l-Arg auxotrophic tumors.

摘要

将人精氨酸酶 I 中通常存在的两个 Mn(2+)离子替换为 Co(2+),导致 K(M) 值显著降低,而 k(cat)没有相应降低。此外,反应的 pH 依赖性从 pK(a)8.5 转移到 pK(a)7.5。这些效应的结合导致在 pH7.4 时整体催化活性 (k(cat)/K(M)) 增加了 10 倍,接近人血清的 pH 值。对于治疗应用同样重要的是,Co(2+)取代导致酶的血清稳定性显著增加。我们的数据可以通过在反应过程中 l-Arg 与 Co(2+)离子之一的直接配位来解释,这与之前报道的模型研究一致。体外细胞毒性实验证实,Co(2+)-取代的人 Arg I 对人肝癌和黑色素瘤细胞系的杀伤作用的 IC(50)值降低了约 12-15 倍,因此构成了治疗 l-Arg 营养缺陷型肿瘤的有前途的新候选药物。

相似文献

2
Crystal structures of complexes with cobalt-reconstituted human arginase I.
Biochemistry. 2011 Sep 20;50(37):8018-27. doi: 10.1021/bi201101t. Epub 2011 Aug 26.
3
A bioengineered arginine-depleting enzyme as a long-lasting therapeutic agent against cancer.
Appl Microbiol Biotechnol. 2020 May;104(9):3921-3934. doi: 10.1007/s00253-020-10484-4. Epub 2020 Mar 6.
4
Strategies for optimizing the serum persistence of engineered human arginase I for cancer therapy.
J Control Release. 2012 Feb 28;158(1):171-9. doi: 10.1016/j.jconrel.2011.09.097. Epub 2011 Oct 6.
5
Metal ions-induced stability and function of bimetallic human arginase-I, a therapeutically important enzyme.
Biochim Biophys Acta Proteins Proteom. 2018 Nov;1866(11):1153-1164. doi: 10.1016/j.bbapap.2018.08.006. Epub 2018 Aug 23.
6
Role of a disulphide bond in Helicobacter pylori arginase.
Biochem Biophys Res Commun. 2010 May 7;395(3):348-51. doi: 10.1016/j.bbrc.2010.04.014. Epub 2010 Apr 8.
10

引用本文的文献

1
The therapeutic potential of pegylated arginase I treatment in glioblastoma.
Sci Rep. 2025 Aug 8;15(1):28994. doi: 10.1038/s41598-025-13882-8.
2
Biochemistry, pharmacology, and in vivo function of arginases.
Pharmacol Rev. 2025 Jan;77(1):100015. doi: 10.1124/pharmrev.124.001271. Epub 2024 Nov 22.
3
Human 3D Lung Cancer Tissue Photothermal Therapy Using Zn- and Co-Doped Magnetite Nanoparticles.
ACS Biomater Sci Eng. 2025 Feb 10;11(2):1084-1095. doi: 10.1021/acsbiomaterials.4c01901. Epub 2025 Jan 24.
4
Therapeutic potential of arginine deprivation therapy for gliomas: a systematic review of the existing literature.
Front Pharmacol. 2024 Aug 22;15:1446725. doi: 10.3389/fphar.2024.1446725. eCollection 2024.
5
Broad-spectrum anti-cancer activity of fused human arginase variants.
Invest New Drugs. 2024 Oct;42(5):531-537. doi: 10.1007/s10637-024-01466-8. Epub 2024 Aug 20.
6
7
Development and characterization of fused human arginase I for cancer therapy.
Invest New Drugs. 2023 Oct;41(5):652-663. doi: 10.1007/s10637-023-01387-y. Epub 2023 Aug 3.
8
Arginase inhibitory activities of guaiane sesquiterpenoids from Curcuma comosa rhizomes.
J Nat Med. 2023 Sep;77(4):891-897. doi: 10.1007/s11418-023-01731-9. Epub 2023 Jul 18.
9
Human arginase I: a potential broad-spectrum anti-cancer agent.
3 Biotech. 2023 May;13(5):159. doi: 10.1007/s13205-023-03590-3. Epub 2023 May 3.
10
Structural and Biochemical Insights into Post-Translational Arginine-to-Ornithine Peptide Modifications by an Atypical Arginase.
ACS Chem Biol. 2023 Mar 17;18(3):528-536. doi: 10.1021/acschembio.2c00879. Epub 2023 Feb 15.

本文引用的文献

1
In the light of directed evolution: pathways of adaptive protein evolution.
Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1(Suppl 1):9995-10000. doi: 10.1073/pnas.0901522106. Epub 2009 Jun 15.
3
Ribonucleases as novel chemotherapeutics : the ranpirnase example.
BioDrugs. 2008;22(1):53-8. doi: 10.2165/00063030-200822010-00006.
7
Design and evolution of new catalytic activity with an existing protein scaffold.
Science. 2006 Jan 27;311(5760):535-8. doi: 10.1126/science.1118953.
8
Sequential binding of cobalt(II) to metallo-beta-lactamase CcrA.
Biochemistry. 2006 Jan 31;45(4):1313-20. doi: 10.1021/bi051105n.
9
Whole plasmid mutagenic PCR for directed protein evolution.
Biomol Eng. 2005 Jun;22(1-3):73-9. doi: 10.1016/j.bioeng.2004.10.004.
10
Novel methods for directed evolution of enzymes: quality, not quantity.
Curr Opin Biotechnol. 2004 Aug;15(4):291-7. doi: 10.1016/j.copbio.2004.05.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验