School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
J Phys Chem A. 2010 Feb 4;114(4):1816-25. doi: 10.1021/jp909681s.
The UV photoelectron spectrum of CF(3)CHF(2) has been recorded and assigned using EOM-CCSD calculations. For the first band, the adiabatic ionization energy (AIE) and vertical ionization energy (VIE) have been measured as (12.71 +/- 0.05) and (13.76 +/- 0.02) eV, respectively. The measured AIE is higher than the recommended value from state-of-the-art ab initio calculations of (12.26 +/- 0.02) eV because of a large geometry change on ionization, mainly arising from a significant increase in the C-C bond length, which results in poor Franck-Condon factors in the adiabatic region. The experimental VIE also shows poor agreement with the computed value of 14.05 +/- 0.06 eV because, in the higher energy region of the first photoelectron band, dissociation of CF(3)CHF(2)(+) to CHF(2)(+) + CF(3) occurs. This has a calculated thermodynamic onset of (12.89 +/- 0.20) eV. Recommendations are made for the heats of formation, DeltaH(f,298)(slashed circle), of CF(3)CHF(2) and CF(3)CHF(2)(+), based on the results of the ab initio calculations. Pyrolysis of flowing CF(3)CHF(2) diluted in argon shows evidence of production of C(2)F(4) and HF at lower temperatures and CF(2) and CF(3)H at higher temperatures. The relative temperature dependence of the observed photoelectron bands associated with these molecules is interpreted in terms of two decomposition reactions of CF(3)CHF(2) as well as the reaction C(2)F(4) --> 2CF(2).
CF(3)CHF(2) 的紫外光电离光谱已经被记录下来,并使用 EOM-CCSD 计算进行了归属。对于第一谱带,测量得到的绝热电离能 (AIE) 和垂直电离能 (VIE) 分别为 (12.71 +/- 0.05) 和 (13.76 +/- 0.02) eV。由于电离时几何形状发生了较大变化,主要是 C-C 键长显著增加,导致绝热区域的 Franck-Condon 因子较差,因此测量得到的 AIE 高于最先进的从头算 ab initio 计算推荐值 (12.26 +/- 0.02) eV。实验 VIE 也与计算值 14.05 +/- 0.06 eV 吻合不佳,因为在第一光电子带的较高能量区域,CF(3)CHF(2)(+) 会解离为 CHF(2)(+) + CF(3)。这一过程的热力学起始点计算值为 (12.89 +/- 0.20) eV。根据从头算计算结果,对 CF(3)CHF(2) 和 CF(3)CHF(2)(+) 的生成焓,DeltaH(f,298)(slash circle) 提出了建议。在氩气中稀释的 CF(3)CHF(2) 的热解表明,在较低温度下会生成 C(2)F(4) 和 HF,在较高温度下会生成 CF(2) 和 CF(3)H。用实验观测到的与这些分子相关的光电子带的相对温度依赖性,用 CF(3)CHF(2) 的两种分解反应以及 C(2)F(4) --> 2CF(2) 反应来解释。