Suppr超能文献

用于微阵列分类的随机球面线性预言机的逻辑集成

Logistic ensembles of Random Spherical Linear Oracles for microarray classification.

作者信息

Peterson Leif E, Coleman Matthew A

机构信息

Center for Biostatistics, The Methodist Hospital Research Institute, Houston, TX 77030, USA.

出版信息

Int J Data Min Bioinform. 2009;3(4):382-97.

Abstract

Random Spherical Linear Oracles (RSLO) for DNA microarray gene expression data are proposed for classifier fusion. RSLO employs random hyperplane splits of samples in the principal component score space based on the first three principal components (X, Y, Z) of the input feature set. Hyperplane splits are used to assign training(testing) samples to separate logistic regression mini-classifiers, which increases the diversity of voting results since errors are not shared across mini-classifiers. We recommend use of RSLO with 3-4 10-fold CV and re-partitioning samples randomly every ten iterations prior to each 10-fold CV. This equates to a total of 30-40 iterations.

摘要

我们提出了用于DNA微阵列基因表达数据的随机球面线性预言机(RSLO)进行分类器融合。RSLO基于输入特征集的前三个主成分(X、Y、Z)在主成分得分空间中对样本进行随机超平面分割。超平面分割用于将训练(测试)样本分配到不同的逻辑回归小型分类器中,由于错误不会在小型分类器之间共享,这增加了投票结果的多样性。我们建议使用RSLO进行3-4次10折交叉验证,并在每次10折交叉验证之前每十次迭代随机重新划分样本。这相当于总共30-40次迭代。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验