Loker Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, USA.
Inorg Chem. 2010 Feb 1;49(3):1245-51. doi: 10.1021/ic9022213.
The reaction of NOF(2)(+)SbF(6)(-) with an equimolar amount of HN(3) in an anhydrous HF solution at -45 degrees C produces N(3)NOF(+)SbF(6)(-). When an excess of HN(3) is used in this reaction, N(7)O(+)SbF(6)(-) is formed. However, this compound could not be isolated as a solid and rapidly decomposed in a quantitative manner with N(2)O evolution to N(5)(+)SbF(6)(-). This reaction represents a novel and more convenient synthesis for N(5)(+)SbF(6)(-) because NOF(2)(+)SbF(6)(-) is more readily accessible than N(2)F(+)SbF(6)(-) and the N(5)(+) can be labeled in all five positions with (15)N by the simple use of terminally singly labeled N(3)(-). The formation of the N(7)O(+) cation was established by isotopic labeling experiments and theoretical calculations. It is shown that the addition of a second azido ligand to the same central atom allows the attack of the negatively charged Nalpha atom of one ligand by the positively charged Ngamma atom of the second ligand, thereby greatly lowering the activation energy barrier toward decomposition and explaining why geminal diazides are much less stable than either monoazides or vicinal diazides.
NOF(2)(+)SbF(6)(-)与等摩尔量的 HN(3)在无水 HF 溶液中于-45°C反应,生成 N(3)NOF(+)SbF(6)(-)。当过量的 HN(3)用于此反应时,形成 N(7)O(+)SbF(6)(-)。然而,由于该化合物不能作为固体分离,并且在定量的 N(2)O 释放下迅速分解为 N(5)(+)SbF(6)(-)。该反应代表了 N(5)(+)SbF(6)(-)的一种新颖且更方便的合成方法,因为 NOF(2)(+)SbF(6)(-)比 N(2)F(+)SbF(6)(-)更容易获得,并且可以通过简单地使用末端单标记的 N(3)(-)将 N(5)(+)标记在所有五个位置上。通过同位素标记实验和理论计算确立了 N(7)O(+)阳离子的形成。结果表明,向同一中心原子添加第二个叠氮配体允许带负电荷的 Nalpha 原子被第二个配体的带正电荷的 Ngamma 原子攻击,从而大大降低了分解的活化能垒,解释了为什么偕二叠氮化物比单叠氮化物或顺式叠氮化物稳定得多。